Perfect Snapping: An Accurate and Efficient Interactive Image segmentation Algorithm

被引:1
|
作者
Zhu, Qingsong [1 ,2 ,3 ,4 ]
Liu, Guanzheng [6 ]
Mei, Zhanyong [1 ]
Li, Qi [5 ]
Xie, Yaoqin [1 ,2 ,3 ,4 ]
Wang, Lei [1 ,2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
[2] Stanford Univ, Sch Med, Stanford, CA 94305 USA
[3] Chinese Acad Sci, Key Lab Hlth Informat, Shenzhen 518055, Peoples R China
[4] Chinese Acad Sci, Key Lab Low Cost Healthcare, Shenzhen 518055, Peoples R China
[5] Univ Sci & Technol China, Sch Software Engn, Hefei 230026, Peoples R China
[6] Sun Yat Sen Univ, Sch Engn, Guangzhou 510000, Guangdong, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Interactive Image Matting; Mean Shift Algorithm; Lazy Snapping;
D O I
10.12785/amis/070417
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Interactive image segmentation is a process that extracts a foreground object from an image based on limited user input. In this paper, we propose a novel interactive image segmentation algorithm named Perfect Snapping which is inspired by the presented method named Lazy Snapping technique. In the algorithm, the mean shift algorithm with a boundary confidence prior is introduced to efficiently pre-segment the original image into homogeneous regions (super-pixels) with precise boundary. Secondly, Gaussian Mixture Model (GMM) clustering algorithm is used to describe and to model the super-pixels. Finally, a Monte Carlo based Expectation Maximization (EM) algorithm is used to perform parametric learning of mixture model for priori knowledge. Experimental results indicate that the proposed algorithm can achieve higher segmentation quality with higher efficiency.
引用
收藏
页码:1387 / 1393
页数:7
相关论文
共 50 条
  • [31] A Clinical-Friendly Deep Interactive Segmentation Algorithm for Volumetric Image
    Bai, T.
    Lin, M.
    Liang, X.
    Wang, B.
    Dohopolski, M.
    Cai, B.
    Nguyen, D.
    Jiang, S.
    MEDICAL PHYSICS, 2022, 49 (06) : E673 - E674
  • [32] An Interactive Algorithm for Blurred Medical Image Segmentation Based on Curve Fitting
    Huang Wenming
    SECOND INTERNATIONAL CONFERENCE ON GENETIC AND EVOLUTIONARY COMPUTING: WGEC 2008, PROCEEDINGS, 2008, : 332 - 335
  • [33] An efficient interactive segmentation algorithm using color correction for underwater images
    M. Sudhakar
    M. Janaki Meena
    Wireless Networks, 2021, 27 : 5435 - 5446
  • [34] An efficient interactive segmentation algorithm using color correction for underwater images
    Sudhakar, M.
    Meena, M. Janaki
    WIRELESS NETWORKS, 2021, 27 (08) : 5435 - 5446
  • [35] Investigation of an Efficient Integrated Semantic Interactive Algorithm for Image Retrieval
    P. Malin Thusnavis Bella Mary I
    M. A. P. Bruntha
    K. Martin Manimekalai
    Hien Sagayam
    Pattern Recognition and Image Analysis, 2021, 31 : 709 - 721
  • [36] Investigation of an Efficient Integrated Semantic Interactive Algorithm for Image Retrieval
    Mary, Thusnavis Bella, I
    Bruntha, P. Malin
    Manimekalai, M. A. P.
    Sagayam, K. Martin
    Dang, Hien
    PATTERN RECOGNITION AND IMAGE ANALYSIS, 2021, 31 (04) : 709 - 721
  • [37] INTERACTIVE IMAGE SEGMENTATION WITH TRANSFORMERS
    Faizov, Boris
    Shakhuro, Vlad
    Konushin, Anton
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 1171 - 1175
  • [38] Sequential interactive image segmentation
    Lin, Zheng
    Zhang, Zhao
    Zhu, Zi-Yue
    Fan, Deng-Ping
    Liu, Xia-Lei
    COMPUTATIONAL VISUAL MEDIA, 2023, 9 (04) : 753 - 765
  • [39] FusionNet for Interactive Image Segmentation
    Wu, Enyi
    Shi, Qingxuan
    Wang, Kanglin
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT II, 2025, 15032 : 332 - 346
  • [40] Sequential interactive image segmentation
    Zheng Lin
    Zhao Zhang
    Zi-Yue Zhu
    Deng-Ping Fan
    Xia-Lei Liu
    Computational Visual Media, 2023, 9 : 753 - 765