A matroid generalization of a result of Dirac

被引:7
|
作者
Oxley, J
机构
[1] Department of Mathematics, Louisiana State University, Baton Rouge
关键词
05B35; 05C40;
D O I
10.1007/BF01200909
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper generalizes a theorem of Dirac for graphs by proving that if M is a 3-connected matroid, then, for all pairs {a, b} of distinct elements of M and all cocircuits C* of M, there is a circuit that contains {a, b} and meets C*. It is also shown that, although the converse of this result fails, the specified condition call be used to characterize 3-connected matroids.
引用
收藏
页码:267 / 273
页数:7
相关论文
共 50 条
  • [21] A GENERALIZATION OF A RESULT OF DOCAGNE
    MELHAM, RS
    SHANNON, AG
    FIBONACCI QUARTERLY, 1995, 33 (02): : 135 - 138
  • [22] A GENERALIZATION OF A RESULT OF SYLVESTER
    KNIGHT, MJ
    JOURNAL OF NUMBER THEORY, 1980, 12 (03) : 364 - 366
  • [23] GENERALIZATION OF DOLLARD RESULT
    ZIZI, K
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1973, 277 (12): : 513 - 515
  • [24] Nonlinear generalization of the Dirac equation
    Marchuk, Nikolay
    THEORETICAL PHYSICS AND ITS NEW APPLICATIONS, 2014, : 180 - 182
  • [25] A generalization of a result of Dembowski and Wagner
    Metsch, Klaus
    DESIGNS CODES AND CRYPTOGRAPHY, 2011, 60 (03) : 277 - 282
  • [26] A GENERALIZATION OF A RESULT OF HAGGKVIST AND NICOGHOSSIAN
    BAUER, D
    BROERSMA, HJ
    VELDMAN, HJ
    RAO, L
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1989, 47 (02) : 237 - 243
  • [27] ON A GENERALIZATION OF A RESULT OF ZHANG AND YANG
    Banerjee, Abhijit
    Majumder, Sujoy
    MATEMATICKI VESNIK, 2016, 68 (03): : 155 - 163
  • [28] Generalization of a result of the Valley Poussin
    Pillichshammer, Friedrich
    ELEMENTE DER MATHEMATIK, 2012, 67 (01) : 26 - 38
  • [29] A generalization of a result of A. Renyi
    Marcu, Danut
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2008, 11 (01): : 13 - 17
  • [30] A GENERALIZATION OF A RESULT OF BAUER AND SCHMEICHEL
    WEI, B
    GRAPHS AND COMBINATORICS, 1993, 9 (04) : 383 - 389