On q-analogue of Bernstein-Schurer-Stancu operators

被引:38
|
作者
Agrawal, P. N. [1 ]
Gupta, Vijay [2 ]
Kumar, A. Sathish [1 ]
机构
[1] Indian Inst Technol Roorkee, Dept Math, Roorkee 247667, Uttar Pradesh, India
[2] Netaji Subhas Inst Technol, Sch Appl Sci, New Delhi 110078, India
关键词
q-Bernstein-Schurer-Stancu operators; q-integers; Modulus of smoothness; Rate of convergence;
D O I
10.1016/j.amc.2013.01.063
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we introduce the Stancu type generalization of the Bernstein-Schurer operators based on q integers. First, we prove the basic convergence of S-n,p((alpha,beta))(., q, x) and then obtain the rate of convergence by these operators in terms of the modulus of continuity and Voronovskaja type theorem. Further, we study local and global direct results for the operators S-n,p((alpha,beta))(., q, x). (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:7754 / 7764
页数:11
相关论文
共 50 条
  • [21] Bivariate Chlodowsky-Stancu Variant of (p,q)-Bernstein-Schurer Operators
    Vedi-Dilek, Tuba
    Gemikonakli, Eser
    JOURNAL OF FUNCTION SPACES, 2019, 2019
  • [22] Statistical Approximation by (p, q)-analogue of Bernstein-Stancu Operators
    Khan, A.
    Sharma, V
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2018, 8 (02): : 100 - 121
  • [23] Voronovskaja type theorem for the Lupas, q-analogue of the Bernstein operators
    Mahmudov, Nazim Idrisoglu
    Sabancigil, Pembe
    MATHEMATICAL COMMUNICATIONS, 2012, 17 (01) : 83 - 91
  • [24] On the Approximation Properties of q-Analogue Bivariate λ-Bernstein Type Operators
    Aliaga, Edmond
    Baxhaku, Behar
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [25] Some approximation results by (p, q)-analogue of Bernstein-Stancu operators
    Mursaleen, M.
    Ansari, Khursheed J.
    Khan, Asif
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 264 : 392 - 402
  • [26] On the Convergence of a Family of Chlodowsky Type Bernstein-Stancu-Schurer Operators
    Shu, Lian-Ta
    Zhou, Guorong
    Cai, Qing-Bo
    JOURNAL OF FUNCTION SPACES, 2018, 2018
  • [27] On the lupas q-analogue of the Bernstein operator
    Ostrovska, Sofiya
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2006, 36 (05) : 1615 - 1629
  • [28] A new kind of Bernstein-Schurer-Stancu-Kantorovich-type operators based on q-integers
    Chauhan, Ruchi
    Ispir, Nurhayat
    Agrawal, P. N.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [29] A new kind of Bernstein-Schurer-Stancu-Kantorovich-type operators based on q-integers
    Ruchi Chauhan
    Nurhayat Ispir
    PN Agrawal
    Journal of Inequalities and Applications, 2017
  • [30] On (p, q)-analogue of modified Bernstein–Schurer operators for functions of one and two variables
    Qing-Bo Cai
    Journal of Applied Mathematics and Computing, 2017, 54 : 1 - 21