Weaving and neural complexity in symmetric quantum states

被引:3
|
作者
Susa, Cristian E. [1 ]
Girolami, Davide [2 ]
机构
[1] Univ Cordoba, Fac Ciencias Basicas, Dept Fis & Elect, Carrera 6 76-103, Monteria, Colombia
[2] Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA
基金
英国工程与自然科学研究理事会;
关键词
Quantum correlations; Many-body systems; Complexity; ENTANGLEMENT;
D O I
10.1016/j.optcom.2017.12.050
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the behaviour of two different measures of the complexity of multipartite correlation patterns, weaving and neural complexity, for symmetric quantum states. Weaving is the weighted sum of genuine multipartite correlations of any order, where the weights are proportional to the correlation order. The neural complexity, originally introduced to characterize correlation patterns in classical neural networks, is here extended to the quantum scenario. We derive closed formulas of the two quantities for GHZ states mixed with white noise. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:157 / 161
页数:5
相关论文
共 50 条
  • [31] A SIMPLE TEST FOR THE SEPARABILITY OF SYMMETRIC QUANTUM STATES
    D'Alessandro, Domenico
    REPORTS ON MATHEMATICAL PHYSICS, 2022, 90 (01) : 141 - 146
  • [32] Quantum Tasks Using Symmetric Cluster States
    Luo, Ming-Xing
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2013, 52 (07) : 2413 - 2424
  • [33] Optimal detection of symmetric mixed quantum states
    Eldar, YC
    Megretski, A
    Verghese, GC
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (06) : 1198 - 1207
  • [34] Probabilistic quantum cloning of three symmetric states
    Wang, Shou-Ya
    Zhang, Wen-Hai
    AIP ADVANCES, 2024, 14 (12)
  • [35] Quantum cloning of mixed states in symmetric subspaces
    Fan, H
    PHYSICAL REVIEW A, 2003, 68 (05):
  • [36] Magnetospectroscopy of symmetric and anti-symmetric states in double quantum wells
    Marchewka, M.
    Sheregii, E. M.
    Tralle, I.
    Ploch, D.
    Tomaka, G.
    Furdak, M.
    Kolek, A.
    Stadler, A.
    Mleczko, K.
    Zak, D.
    Strupinski, W.
    Jasik, A.
    Jakiela, R.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2008, 40 (04): : 894 - 906
  • [37] Epistemic View of Quantum States and Communication Complexity of Quantum Channels
    Montina, Alberto
    PHYSICAL REVIEW LETTERS, 2012, 109 (11)
  • [38] MATCHING UPPER BOUNDS ON SYMMETRIC PREDICATES IN QUANTUM COMMUNICATION COMPLEXITY
    Suruga, Daiki
    Quantum Information and Computation, 2024, 24 (11-12): : 917 - 931
  • [39] MATCHING UPPER BOUNDS ON SYMMETRIC PREDICATES IN QUANTUM COMMUNICATION COMPLEXITY
    Suruga, Daiki
    QUANTUM INFORMATION & COMPUTATION, 2024, 24 (11-12) : 917 - 931