Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils

被引:643
|
作者
Zhang, Li-Mei [1 ]
Hu, Hang-Wei [1 ,2 ]
Shen, Ju-Pei [1 ]
He, Ji-Zheng [1 ]
机构
[1] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Lab Urban & Reg Ecol, Beijing 100085, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing 100085, Peoples R China
来源
ISME JOURNAL | 2012年 / 6卷 / 05期
基金
中国国家自然科学基金;
关键词
acidic soil; ammonia-oxidizing archaea; ammonia-oxidizing bacteria; dicyandiamide; nitrification; stable isotope probing; NITRIFICATION INHIBITORS; COMMUNITY STRUCTURE; NITROGEN; ABUNDANCE; CRENARCHAEOTA; DICYANDIAMIDE; DIVERSITY; GROWTH; ACIDIFICATION; NITROSOSPIRA;
D O I
10.1038/ismej.2011.168
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Increasing evidence demonstrated the involvement of ammonia-oxidizing archaea (AOA) in the global nitrogen cycle, but the relative contributions of AOA and ammonia-oxidizing bacteria (AOB) to ammonia oxidation are still in debate. Previous studies suggest that AOA would be more adapted to ammonia-limited oligotrophic conditions, which seems to be favored by protonation of ammonia, turning into ammonium in low-pH environments. Here, we investigated the autotrophic nitrification activity of AOA and AOB in five strongly acidic soils (pH<4.50) during microcosm incubation for 30 days. Significantly positive correlations between nitrate concentration and amoA gene abundance of AOA, but not of AOB, were observed during the active nitrification. (CO2)-C-13-DNA-stable isotope probing results showed significant assimilation of C-13-labeled carbon source into the amoA gene of AOA, but not of AOB, in one of the selected soil samples. High levels of thaumarchaeal amoA gene abundance were observed during the active nitrification, coupled with increasing intensity of two denaturing gradient gel electrophoresis bands for specific thaumarchaeal community. Addition of the nitrification inhibitor dicyandiamide (DCD) completely inhibited the nitrification activity and CO2 fixation by AOA, accompanied by decreasing thaumarchaeal amoA gene abundance. Bacterial amoA gene abundance decreased in all microcosms irrespective of DCD addition, and mostly showed no correlation with nitrate concentrations. Phylogenetic analysis of thaumarchaeal amoA gene and 16S rRNA gene revealed active (CO2)-C-13-labeled AOA belonged to groups 1.1a-associated and 1.1b. Taken together, these results provided strong evidence that AOA have a more important role than AOB in autotrophic ammonia oxidation in strongly acidic soils. The ISME Journal (2012) 6, 1032-1045; doi:10.1038/ismej.2011.168; published online 1 December 2011
引用
收藏
页码:1032 / 1045
页数:14
相关论文
共 50 条
  • [21] Ammonia-oxidizing archaea have better adaptability in oxygenated/hypoxic alternant conditions compared to ammonia-oxidizing bacteria
    Shuai Liu
    Baolan Hu
    Zhanfei He
    Bin Zhang
    Guangming Tian
    Ping Zheng
    Fang Fang
    Applied Microbiology and Biotechnology, 2015, 99 : 8587 - 8596
  • [22] Soil depth and fertilization had more influence on comammox Nitrospira and ammonia-oxidizing archaea communities than ammonia-oxidizing bacteria in an acidic paddy soil
    Liu, Haiyang
    Yao, Chen
    Yang, Huanhuan
    Liu, Hongen
    Tao, Zhikang
    Chen, Shuotong
    Mi, Wenhai
    APPLIED SOIL ECOLOGY, 2025, 206
  • [23] Manure fertilization alters the population of ammonia-oxidizing bacteria rather than ammonia-oxidizing archaea in a paddy soil
    Wang, Yu
    Zhu, Guibing
    Song, Liyan
    Wang, Shanyun
    Yin, Chengqing
    JOURNAL OF BASIC MICROBIOLOGY, 2014, 54 (03) : 190 - 197
  • [24] Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam
    Shen, Ju-Pei
    Zhang, Li-Mei
    Zhu, Yong-guan
    Zhang, Jia-bao
    He, Ji-zheng
    ENVIRONMENTAL MICROBIOLOGY, 2008, 10 (06) : 1601 - 1611
  • [25] Diversity and Abundance of Ammonia-Oxidizing Bacteria and Ammonia-Oxidizing Archaea During Cattle Manure Composting
    Yamamoto, Nozomi
    Otawa, Kenichi
    Nakai, Yutaka
    MICROBIAL ECOLOGY, 2010, 60 (04) : 807 - 815
  • [26] Diversity and Abundance of Ammonia-Oxidizing Bacteria and Ammonia-Oxidizing Archaea During Cattle Manure Composting
    Nozomi Yamamoto
    Kenichi Otawa
    Yutaka Nakai
    Microbial Ecology, 2010, 60 : 807 - 815
  • [27] A Review of Ammonia-Oxidizing Archaea and Anaerobic Ammonia-Oxidizing Bacteria in the Aquaculture Pond Environment in China
    Lu, Shimin
    Liu, Xingguo
    Liu, Chong
    Cheng, Guofeng
    Zhou, Runfeng
    Li, Yayuan
    FRONTIERS IN MICROBIOLOGY, 2021, 12
  • [28] Community Structure of Ammonia-Oxidizing Archaea and Ammonia-Oxidizing Bacteria in Soil Treated with the Insecticide Imidacloprid
    Cycon, Mariusz
    Piotrowska-Seget, Zofia
    BIOMED RESEARCH INTERNATIONAL, 2015, 2015
  • [29] A comparative study of ammonia-oxidizing archaea and bacteria in acidic and alkaline purple soils
    Zhi-Feng Zhou
    Ming-Xia Wang
    Wan-Lu Liu
    Zhen-Lun Li
    Feng Luo
    De-Ti Xie
    Annals of Microbiology, 2016, 66 : 615 - 623
  • [30] A comparative study of ammonia-oxidizing archaea and bacteria in acidic and alkaline purple soils
    Zhou, Zhi-Feng
    Wang, Ming-Xia
    Liu, Wan-Lu
    Li, Zhen-Lun
    Luo, Feng
    Xie, De-Ti
    ANNALS OF MICROBIOLOGY, 2016, 66 (02) : 615 - 623