Counterion and alcohol effect in the formation of mesoporous silica

被引:50
|
作者
Lin, HP
Kao, CP
Mou, CY [1 ]
机构
[1] Natl Taiwan Univ, Dept Chem, Taipei 106, Taiwan
[2] Acad Sinica, Inst Atom & Mol Sci, Taipei 106, Taiwan
[3] Natl Taiwan Univ, Ctr Condensed Matter Res, Dept Chem, Taipei 106, Taiwan
关键词
mesoporous; hexagonal phase; Hofmeister; lyotropic; counterion;
D O I
10.1016/S1387-1811(01)00336-5
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
The adsorption of silicate anions onto the cationic micellar surface and the slow condensation of silicate species control the early phase of the alkaline synthesis of mesoporous materials. We found that there exists a well-defined induction time (tp) of the transition from clear solution to white precipitation gel. The induction time tp increases with the concentration of added salt NaX. At a fixed concentration of the salts, the tp decreases in the order: ClO3- > NO3- > Br- > SO32-, SO32- > Cl- > F-, with F- being the most effective ion in forming the hexagonal phase gel. The order in induction time reflects the strength in counter-ion binding of X- to micelles. The stronger adsorbing X- would block the adsorption of silicate ions on micelles and delay the formation of the silica-surfactant mesophases. The order of the ion series agrees with the Hofmeister series in many lyotropic systems such as in ion-protein and ion-surfactant interactions, Surfactant chain length and the addition of I-alkanols affects the counterion adsorption behavior and they also have strong influences on the rate of formation of the silicate-surfactant mesophase. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:135 / 141
页数:7
相关论文
共 50 条
  • [41] Formation of hollow silica spheres with ordered mesoporous structure by treatment with dimethyl carbonate for selective decomposition of mesoporous silica core
    Okamoto, Masaki
    Huang, Huimin
    MICROPOROUS AND MESOPOROUS MATERIALS, 2012, 163 : 102 - 109
  • [42] Formation of a super-dense hydrogen monolayer on mesoporous silica
    Balderas-Xicohtencatl, Rafael
    Lin, Hung-Hsuan
    Lurz, Christian
    Daemen, Luke
    Cheng, Yongqiang
    Struckhoff, Katie Cychosz
    Guillet-Nicolas, Remy
    Schutz, Gisela
    Heine, Thomas
    Ramirez-Cuesta, Anibal J.
    Thommes, Matthias
    Hirscher, Michael
    NATURE CHEMISTRY, 2022, 14 (11) : 1319 - +
  • [43] Formation of mesoporous silica coating on cores with different surface properties
    Eurov, D. A.
    Stovpiaga, E. Yu
    Kirilenko, D. A.
    Kurdyukov, D. A.
    ST PETERSBURG POLYTECHNIC UNIVERSITY JOURNAL-PHYSICS AND MATHEMATICS, 2024, 17 (03): : 283 - 287
  • [44] Formation of mesoporous silica thin films on oxide substrates by casting
    Huang, L
    Kawi, S
    Hidajat, K
    Ng, SC
    MICROPOROUS AND MESOPOROUS MATERIALS, 2006, 88 (1-3) : 254 - 265
  • [45] Control of wall thickness in the formation of ordered mesoporous silica films
    Jung, Sang-Bae
    Ha, Tae-Jung
    Park, Hyung-Ho
    THIN SOLID FILMS, 2007, 515 (16) : 6521 - 6525
  • [46] The formation of dimensionally ordered silicon nanowires within mesoporous silica
    Coleman, NRB
    Morris, MA
    Spalding, TR
    Holmes, JD
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (01) : 187 - 188
  • [47] Fluorescence probing investigations of the mechanism of formation of organized mesoporous silica
    Zana, R
    Frasch, J
    Soulard, M
    Lebeau, B
    Patarin, J
    LANGMUIR, 1999, 15 (08) : 2603 - 2606
  • [48] Formation of GaN Nanorods in Monodisperse Spherical Mesoporous Silica Particles
    Stovpiaga, E. Yu
    Kurdyukov, D. A.
    Kirilenko, D. A.
    Golubev, V. G.
    SEMICONDUCTORS, 2020, 54 (07) : 782 - 787
  • [49] Formation mechanism of spherical mesoporous silica prepared using dodecylamine
    Shiratori, Y
    Saito, H
    Higuchi, M
    Asaka, T
    Katayama, K
    Azuma, Y
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2003, 111 (02) : 104 - 109
  • [50] Towards understanding of shape formation mechanism of mesoporous silica particles
    Volkov, Dmytro O.
    Benson, James
    Kievsky, Yaroslav Y.
    Sokolov, Igor
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2010, 12 (02) : 341 - 344