Broadband photonic crystal antireflection

被引:10
|
作者
Malekmohammad, M. [1 ]
Soltanolkotabi, M. [1 ]
Erfanian, A. [2 ]
Asadi, R. [3 ]
Bagheri, S. [4 ]
Zahedinejad, M. [2 ]
Khaje, M. [2 ]
Naderi, M. H. [1 ]
机构
[1] Univ Isfahan, Fac Sci, Dept Phys, Hezar Jerib 8174673441, Isfahan, Iran
[2] KN Toosi Univ Technol, Dept Elect Engn, Tehran, Iran
[3] Univ Tehran, Dept Phys, Tehran, Iran
[4] Shahid Beheshti Univ GC Evin, Laser & Plasma Res Inst, Tehran, Iran
关键词
photonic crystal; interference lithography; antireflection; SILICON SOLAR-CELLS; ABSORPTION ENHANCEMENT; LIGHT;
D O I
10.2971/jeos.2012.12008
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Broadband antireflection layers have been fabricated by two dimensional (2D) photonic crystals (PCs) with tapered pillars on the Si substrate. These PCs have been produced by interference lithography and reactive ion etching (RIE) techniques. The effect of depth and the filling factor (FF) of the PCs on the reflectance magnitude and bandwidth has been investigated. The obtained reflectance was less than 1% in the broad spectral range from 400 to 2100 nm. Our numerical simulation shows the PC pillars slope has an essential effect in the reduction of the reflection. However, our results show that the existence of RIE grasses in the PCs, which are created in the RIE process, does not influence the performance of the antireflection layer. This leads to a simpler fabrication process. [DOI: http://dx.doi.org/10.2971/jeos.2012.12008]
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Broadband single-polarization photonic crystal fiber
    Folkenberg, JR
    Nielsen, MD
    Jakobsen, C
    OPTICS LETTERS, 2005, 30 (12) : 1446 - 1448
  • [22] Crossings in photonic crystal fiber with hybrid core and design of broadband dispersion compensating photonic crystal fiber
    Xu, Huizhen
    Kong, Qinglin
    Zhou, Changjie
    OPTICAL FIBER TECHNOLOGY, 2021, 63
  • [23] Three-dimensional inverted photonic grating with engineerable refractive indices for broadband antireflection of terahertz waves
    Chen, Yuting W.
    Han, Pengyu
    Zhang, X. -C.
    Kuo, Mei-Ling
    Lin, Shawn-Yu
    OPTICS LETTERS, 2010, 35 (19) : 3159 - 3161
  • [24] Self-collimating photonic crystal antireflection structure for both TE and TM polarizations
    Park, Jong-Moon
    Lee, Sun-Goo
    Park, Hae-Ryeong
    Lee, Myung-Hyun
    OPTICS EXPRESS, 2010, 18 (12): : 13083 - 13093
  • [25] A broadband low loss and high birefringence terahertz photonic bandgap photonic crystal fiber
    Bai Jin-Jun
    Wang Chang-Hui
    Huo Bing-Zhong
    Wang Xiang-Hui
    Chang Sheng-Jiang
    ACTA PHYSICA SINICA, 2011, 60 (09)
  • [26] Broadband Antireflection with Halide Perovskite Metasurfaces
    Baryshnikova, Kseniia
    Gets, Dmitry
    Liashenko, Tatiana
    Pushkarev, Anatoly
    Mukhin, Ivan
    Kivshar, Yuri
    Makarov, Sergey
    LASER & PHOTONICS REVIEWS, 2020, 14 (12)
  • [27] Broadband photonic crystal passive filters for monolithically integrated InP Photonic Integrated Circuits
    Davanco, Marcelo
    Xing, Aimin
    Hu, Evelyn L.
    Blumenthal, Daniel J.
    Raring, James
    2006 OPTICAL FIBER COMMUNICATION CONFERENCE/NATIONAL FIBER OPTIC ENGINEERS CONFERENCE, VOLS 1-6, 2006, : 2113 - 2115
  • [28] Assessing approximate broadband omnidirectional antireflection
    Barriuso, A. G.
    Monzon, J. J.
    Sanchez-Soto, L. L.
    Felipe, A.
    OPTICS COMMUNICATIONS, 2007, 270 (02) : 116 - 120
  • [29] Subwavelength structures for broadband antireflection application
    Ting, Chia-Jen
    Chen, Chi-Feng
    Chou, C. P.
    OPTICS COMMUNICATIONS, 2009, 282 (03) : 434 - 438
  • [30] Graphene as broadband terahertz antireflection coating
    Zhou, Yixuan
    Xu, Xinlong
    Hu, Fangrong
    Zheng, Xinliang
    Li, Weilong
    Zhao, Penghui
    Bai, Jintao
    Ren, Zhaoyu
    APPLIED PHYSICS LETTERS, 2014, 104 (05)