Investigation on specific solutions of Gerchberg-Saxton algorithm

被引:24
|
作者
Memmolo, Pasquale [1 ,2 ]
Miccio, Lisa [1 ]
Merola, Francesco [1 ]
Paciello, Antonio [2 ,3 ]
Embrione, Valerio [3 ]
Fusco, Sabato [2 ]
Ferraro, Pietro [1 ]
Netti, Paolo Antonio [2 ]
机构
[1] CNR, Ist Nazl Ott, I-80078 Pozzuoli, NA, Italy
[2] Ist Italiano Tecnol, Ctr Adv Biomat Hlth Care CRIB, I-80125 Naples, Italy
[3] Univ Naples Federico II, Interdisciplinary Res Ctr Biomat CRIB, I-80125 Naples, Italy
关键词
Computer Generated Holograms; Holographic optical elements; Spatial light modulators; HOLOGRAPHIC OPTICAL TWEEZERS; TRAPS; PHASE; MANIPULATION; DIFFRACTION; FABRICATION; GENERATION; DISPLAY; ARRAYS;
D O I
10.1016/j.optlaseng.2013.06.008
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The most popular method used to generate the Computer Generated Holograms (CGH) is the Gerchberg Saxton (GS) algorithm. GS computes an approximation of the desired beam shape, and consequently, some distortions may arise. Although many algorithms have been proposed, exact methods to overcome the problem completely do not yet exist. Here we show, for the first time to best of our knowledge, that in some specific configurations exact solutions of the GS algorithm can be achieved so as to produce a limited number of light intensity spots in a clean array. The basic concept is described and both numerical as well as experimental implementations are provided. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:206 / 211
页数:6
相关论文
共 50 条
  • [31] Speckle-reduced holographic beam shaping with modified Gerchberg-Saxton algorithm
    Pang, Hui
    Liu, Wenjing
    Cao, Axiu
    Deng, Qiling
    OPTICS COMMUNICATIONS, 2019, 433 : 44 - 51
  • [32] Using the Gerchberg-Saxton algorithm to reconstruct nonmodulated pyramid wavefront sensor measurements
    Chambouleyron, V.
    Sengupta, A.
    Salama, M.
    van Kooten, M.
    Gerard, B. L.
    Haffert, S. Y.
    Cetre, S.
    Dillon, D.
    Kupke, R.
    Jensen-Clem, R.
    Hinz, P.
    Macintosh, B.
    ASTRONOMY & ASTROPHYSICS, 2024, 681
  • [33] Use of the Gerchberg-Saxton algorithm in optimal coherent anti-Stokes Raman spectroscopy
    Moore, D. S.
    McGrane, S. D.
    Greenfield, M. T.
    Scharff, R. J.
    Chalmers, R. E.
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2012, 402 (01) : 423 - 428
  • [34] 3D Gerchberg-Saxton Optical Correlation
    Chen, Wen
    IEEE PHOTONICS JOURNAL, 2018, 10 (02):
  • [35] Alternating Projections with Applications to Gerchberg-Saxton Error Reduction
    Noll, Dominikus
    SET-VALUED AND VARIATIONAL ANALYSIS, 2021, 29 (04) : 771 - 802
  • [36] Holographic optical tweezers obtained by using the three-dimensional Gerchberg-Saxton algorithm
    Chen, Hao
    Guo, Yunfeng
    Chen, Zhaozhong
    Hao, Jingjing
    Xu, Ji
    Wang, Hui-Tian
    Ding, Jianping
    JOURNAL OF OPTICS, 2013, 15 (03)
  • [37] A fireworks algorithm based Gerchberg-Saxton algorithm for the design of diffractive optical element for beam shaping
    Niu, Bowen
    Dai, Xingang
    Hu, Yanjun
    Zhang, Hongru
    Jing, Gaoshan
    Zhang, Zhiping
    Fan, Guofang
    OPTICS COMMUNICATIONS, 2024, 557
  • [38] Fourier hologram method using Gerchberg-Saxton algorithm for parallel femtosecond laser processing
    汪金礼
    苏亚辉
    崔洪涛
    杨亮
    方志伟
    Journal of Measurement Science and Instrumentation, 2012, 3 (03) : 304 - 306
  • [39] Dynamic compensatory Gerchberg-Saxton algorithm for multiple-plane reconstruction in holographic displays
    Zhou, Pengcheng
    Li, Yan
    Liu, Shuxin
    Su, Yikai
    OPTICS EXPRESS, 2019, 27 (06) : 8958 - 8967
  • [40] Fast laser field reconstruction method based on a Gerchberg-Saxton algorithm with mode decomposition
    Moulanier, I.
    Dickson, L. T.
    Massimo, F.
    Maynard, G.
    Cros, B.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2023, 40 (09) : 2450 - 2461