Support vector machine-based classification of Alzheimer's disease from whole-brain anatomical MRI

被引:335
|
作者
Magnin, Benoit [1 ,2 ,3 ,4 ]
Mesrob, Lilia [2 ,3 ,4 ]
Kinkingnehun, Serge [2 ,3 ,4 ,5 ]
Pelegrini-Issac, Melanie [1 ,3 ,4 ]
Colliot, Olivier [4 ,6 ]
Sarazin, Marie [2 ,3 ,4 ,7 ]
Dubois, Bruno [2 ,3 ,4 ,7 ]
Lehericy, Stephane [2 ,3 ,4 ,8 ,9 ]
Benali, Habib [1 ,3 ,4 ,10 ]
机构
[1] INSERM, UMR S 678, F-75013 Paris, France
[2] INSERM, UMR S 610, F-75013 Paris, France
[3] Univ Paris 06, UMPC, Fac Med Pitie Salpetriere, F-75013 Paris, France
[4] IFR 49, F-91191 Gif Sur Yvette, France
[5] Eye BRAIN, F-94400 Vitry Sur Seine, France
[6] CNRS, UPR LENA 640, F-75013 Paris, France
[7] Hop La Pitie Salpetriere, Dept Neurol, F-75013 Paris, France
[8] Univ Paris 06, UMPC, Ctr NeuroImaging Res CENIR, F-75013 Paris, France
[9] Hop La Pitie Salpetriere, Dept Neuroradiol, F-75013 Paris, France
[10] Univ Montreal, UNF CRIUGM, Montreal, PQ H3W 1W5, Canada
关键词
Alzheimer's disease; Diagnosis; Magnetic resonance image; Support vector machine; Sensitivity; Specificity; MILD COGNITIVE IMPAIRMENT; DIMENSIONAL PATTERN-CLASSIFICATION; ENTORHINAL CORTEX; LEWY BODIES; CEREBRAL ATROPHY; EARLY-DIAGNOSIS; DEMENTIA; HIPPOCAMPAL; AD; PERFORMANCE;
D O I
10.1007/s00234-008-0463-x
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
We present and evaluate a new automated method based on support vector machine (SVM) classification of whole-brain anatomical magnetic resonance imaging to discriminate between patients with Alzheimer's disease (AD) and elderly control subjects. We studied 16 patients with AD [mean age +/- standard deviation (SD) = 74.1 +/- 5.2 years, mini-mental score examination (MMSE) = 23.1 +/- 2.9] and 22 elderly controls (72.3 +/- 5.0 years, MMSE = 28.5 +/- 1.3). Three-dimensional T1-weighted MR images of each subject were automatically parcellated into regions of interest (ROIs). Based upon the characteristics of gray matter extracted from each ROI, we used an SVM algorithm to classify the subjects and statistical procedures based on bootstrap resampling to ensure the robustness of the results. We obtained 94.5% mean correct classification for AD and control subjects (mean specificity, 96.6%; mean sensitivity, 91.5%). Our method has the potential in distinguishing patients with AD from elderly controls and therefore may help in the early diagnosis of AD.
引用
收藏
页码:73 / 83
页数:11
相关论文
共 50 条
  • [31] Personalizing Deep Brain Stimulation Therapy for Parkinson's Disease With Whole-Brain MRI Radiomics and Machine Learning
    Haliasos, Nikolaos
    Giakoumettis, Dimitrios
    Gnanaratnasingham, Prathishta
    Low, Hu Liang
    Misbahuddin, Anjum
    Zikos, Panagiotis
    Sakkalis, Vangelis
    Cleo, Spanaki
    Vakis, Antonios
    Bisdas, Sotirios
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2024, 16 (05)
  • [32] Comparison of Support Vector Machine-Based Processing Chains for Hyperspectral Image Classification
    Rojas, Marta
    Dopido, Inmaculada
    Plaza, Antonio
    Gamba, Paolo
    SATELLITE DATA COMPRESSION, COMMUNICATIONS, AND PROCESSING VI, 2010, 7810
  • [33] Support vector machine-based stuttering dysfluency classification using GMM supervectors
    Mahesha, P.
    Vinod, D. S.
    INTERNATIONAL JOURNAL OF GRID AND UTILITY COMPUTING, 2015, 6 (3-4) : 143 - 149
  • [34] Alzheimer's disease Classification from Brain MRI based on transfer learning from CNN
    Khagi, Bijen
    Lee, Chung Ghiu
    Kwon, Goo-Rak
    2018 11TH BIOMEDICAL ENGINEERING INTERNATIONAL CONFERENCE (BMEICON 2018), 2018,
  • [35] OISVM: Optimal Incremental Support Vector Machine-based EEG Classification for Brain-computer Interface Model
    Thanigaivelu, P. S.
    Sridhar, S. S.
    Sulthana, S. Fouziya
    COGNITIVE COMPUTATION, 2023, 15 (03) : 888 - 903
  • [36] OISVM: Optimal Incremental Support Vector Machine-based EEG Classification for Brain-computer Interface Model
    P. S. Thanigaivelu
    S. S. Sridhar
    S. Fouziya Sulthana
    Cognitive Computation, 2023, 15 : 888 - 903
  • [37] Segmentation of Skull Base Tumors from MRI Using a Hybrid Support Vector Machine-Based Method
    Zhou, Jiayin
    Tian, Qi
    Chong, Vincent
    Xiong, Wei
    Huang, Weimin
    Wang, Zhimin
    MACHINE LEARNING IN MEDICAL IMAGING, 2011, 7009 : 134 - +
  • [38] A whole-brain functional connectivity model of Alzheimer's disease pathology
    Prakash, Ruchika S.
    Mckenna, Michael R.
    Gbadeyan, Oyetunde
    Shankar, Anita R.
    Pugh, Erika A.
    Teng, James
    Andridge, Rebecca
    Berry, Anne
    Scharre, Douglas W.
    ALZHEIMERS & DEMENTIA, 2025, 21 (01)
  • [39] Whole-brain Segmentation and Change-point Analysis of Anatomical Brain MRI-Application in Premanifest Huntington's Disease
    Wu, Dan
    Faria, Andreia, V
    Younes, Laurent
    Ross, Christopher A.
    Mori, Susumu
    Miller, Michael, I
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2018, (136):
  • [40] Classification of Alzheimer's disease patients with hippocampal shape, wrapper based feature selection and support vector machine
    Young, Jonathan
    Ridgway, Gerard
    Leung, Kelvin
    Ourselin, Sebastien
    MEDICAL IMAGING 2012: IMAGE PROCESSING, 2012, 8314