Performance of a-Si:H photodiode technology-based advanced CMOS active pixel sensor imagers

被引:4
|
作者
Theil, JA [1 ]
Haddad, H [1 ]
Snyder, R [1 ]
Zelman, M [1 ]
Hula, D [1 ]
Lindahl, K [1 ]
机构
[1] Agilent Technol, Imaging Elect Div, Santa Clara, CA 95051 USA
来源
WAVE OPTICS AND VLSI PHOTONIC DEVICES FOR INFORMATION PROCESSING | 2001年 / 4435卷
关键词
active pixel sensors; hydrogenated amorphous silicon; elevated photodiode array; CMOS image sensors;
D O I
10.1117/12.451149
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Amorphous silicon photodiode technology is a very attractive option for image array integrated circuits because it enables large die-size reduction and higher light collection efficiency than c-Si arrays. The concept behind the technology is to place the photosensing element directly above the rest of the circuit, thus eliminating the need to make areal tradeoffs between photodiode and pixel circuit. We have developed an photodiode array technology that is fully compatible with a 0.35um CMOS process to produce image sensors arrays with 10-bit dynamic range that are 30% smaller than comparable c-Si photodiode arrays. The work presented here will discuss performance issues and solutions to lend itself to cost-effective high-volume manufacturing. The various methods of interconnection of the diode to the array and their advantages will be presented. The effect of doped layer thickness and concentration on quantum efficiency, and the effect of a-Si:H defect concentration on diode performance will be discussed. The photodiode dark leakage current density is about 80 pA/cm(2), and its absolute quantum efficiency peaks about 85% at 550 nm. These sensors have 50% higher sensitivity, and 2x lower dark current when compared to bulk silicon sensors of the same design. The cell utilizes a 3 FET design, but allows for 100% photodiode area due to the elevated nature of the design. The VGA (640x480), array demonstrated here uses common intrinsic and p-type contact layers, and makes reliable contact to those layers by use of a monolithic transparent conductor strap tied to vias in the interconnect.
引用
收藏
页码:206 / 213
页数:8
相关论文
共 50 条
  • [41] Active pixel image sensor scale down in 0.18um CMOS technology
    Chien, HC
    Wuu, SG
    Yaung, DN
    Tseng, CH
    Lin, JS
    Wang, CS
    Chang, CK
    Hsiao, YK
    INTERNATIONAL ELECTRON DEVICES 2002 MEETING, TECHNICAL DIGEST, 2002, : 813 - 816
  • [42] Advanced Color Filter Isolation Technology for Sub-Micron Pixel of CMOS Image Sensor
    Bak, Hojin
    Lee, Horyeong
    Kim, Won-Jin
    Choi, Inho
    Kim, Hanjun
    Kim, Dongha
    Lee, Hanseung
    Han, Sukman
    Lee, Kyoung-In
    Do, Youngwoong
    Cho, Minsu
    Baek, Moung-Seok
    Kim, Kyungdo
    Park, Wonje
    Kang, Seong-Hun
    Hong, Sung-Joo
    Oh, Hoon-Sang
    Song, Changrock
    2022 INTERNATIONAL ELECTRON DEVICES MEETING, IEDM, 2022,
  • [43] Implementation and testing of fault-tolerant photodiode-based active pixel sensor (APS)
    Djaja, S
    Chapman, GH
    Cheung, DYH
    Audet, Y
    18TH IEEE INTERNATIONAL SYMPOSIUM ON DEFECT AND FAULT TOLERANCE IN VLSI SYSTEMS, PROCEEDINGS, 2003, : 53 - 60
  • [44] A 2.5 μm Pitch CMOS Active Pixel Sensor in 65 nm Technology for Electron Microscopy
    Contarato, Devis
    Denes, Peter
    Doering, Dionisio
    Joseph, John
    Krieger, Brad
    Schindler, Simon
    2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC), 2012, : 2036 - 2040
  • [45] High performance active pixel sensors fabricated in a standard 2.0 μm CMOS technology
    Mestanza, SNM
    Jimenez, HG
    Silva, IF
    Diniz, JA
    Doi, I
    Swart, JW
    ICCDCS 2004: Fifth International Caracas Conference on Devices, Circuits and Systems, 2004, : 276 - 280
  • [46] A low-voltage CMOS complementary active pixel sensor (CAPS) fabricated using a 0.25 μm CMOS technology
    Xu, C
    Ki, WH
    Chan, MS
    IEEE ELECTRON DEVICE LETTERS, 2002, 23 (07) : 398 - 400
  • [47] Rad Tolerant CMOS Image Sensor Based on Hole Collection 4T Pixel Pinned Photodiode
    Place, Sebastien
    Carrere, Jean-Pierre
    Allegret, Stephane
    Magnan, Pierre
    Goiffon, Vincent
    Roy, Francois
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2012, 59 (06) : 2888 - 2893
  • [48] Characterization of a thick layer a-Si:H pixel detector with TFA technology using a scanning electron microscope
    Despeisse, M.
    Saramad, S.
    Ballif, C.
    Dunand, S.
    Jarron, P.
    Morse, J.
    Snigireva, I.
    Miazza, C.
    Moraes, D.
    Anelli, G.
    Shah, A.
    Wyrsch, N.
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2006, 352 (9-20) : 1832 - 1836
  • [49] Performance of CMOS pixel sensor prototypes in ams H35 and aH18 technology for the ATLAS ITk upgrade
    Kiehn, Moritz
    Di Bello, Francesco Armando
    Benoit, Mathieu
    Mohr, Raimon Casanova
    Chen, Hucheng
    Chen, Kai
    Sultan, D. M. S.
    Ehrler, Felix
    Ferrere, Didier
    Frizell, Dylan
    Sevilla, Sergio Gonzalez
    Iacobucci, Giuseppe
    Lanni, Francesco
    Liu, Hongbin
    Merlassino, Claudia
    Metcalfe, Jessica
    Miucci, Antonio
    Peric, Ivan
    Prathapan, Mridula
    Schimassek, Rudolf
    Barreto, Mateus Vicente
    Weston, Thomas
    Figueras, Eva Vilella
    Weber, Michele
    Weber, Alena
    Wong, Winnie
    Wu, Weihao
    Zaffaroni, Ettore
    Zhang, Hui
    Zhang, Matt
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2019, 924 : 104 - 107
  • [50] First tests of CHERWELL, a Monolithic Active Pixel Sensor: A CMOS Image Sensor (CIS) using 180 nm technology
    Mylroie-Smith, James
    Kolya, Scott
    Velthuis, Jaap
    Bevan, Adrian
    Inguglia, Gianluca
    Headspith, Jon
    Lazarus, Ian
    Lemon, Roy
    Crooks, Jamie
    Turchetta, Renato
    Wilson, Fergus
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2013, 731 : 137 - 140