ON NATURAL HOMOMORPHISMS OF LOCAL COHOMOLOGY MODULES

被引:0
|
作者
Mahmood, W. [1 ]
机构
[1] Quaid I Azam Univ Islamabad, Islamabad, Pakistan
来源
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY | 2016年 / 42卷 / 06期
关键词
Local cohomology; Ext and Tor modules; natural homomorphisms; ENDOMORPHISM-RINGS; DIMENSIONS; COMPLEXES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a non-zero finitely generated module over a commutative Noetherian local ring (R, m) with dim(R)(M) = t. Let I be an ideal of R with grade(I, M) = c. In this article we will investigate several natural homomorphisms of local cohomology modules. The main purpose of this article is to investigate when the natural homomorphisms gamma : Tor(c)(R)(k, H-I(c)(M)) -> k circle times(R) M and eta : Ext(R)(d)(k, H-I(c)(M)) -> Ext(R)(t)(k, M) are non-zero where d := t-c. In fact for a Cohen-Macaulay module M we will show that the homomorphism eta is injective (resp. surjective) if and only if the homomorphism H-m(d)(H-I(c)(M)) -> H-m(t)(M) is injective (resp. surjective) under the additional assumption of vanishing of Ext modules. The similar results are obtained for the homomorphism gamma. Moreover we will construct the natural homomorphism Tor(c)(R)(k, H-I(c)(M)) -> Tor(c)(R)(k, H-J(c)(M)) for the ideals J subset of I with c = grade(I, M) = grade(J, M). There are several sufficient conditions on I and J to provide this homomorphism is an isomorphism.
引用
收藏
页码:1343 / 1361
页数:19
相关论文
共 50 条
  • [21] Artinianness of local cohomology modules
    Aghapournahr, Moharram
    Melkersson, Leif
    ARKIV FOR MATEMATIK, 2014, 52 (01): : 1 - 10
  • [22] ARTINIANNESS OF LOCAL COHOMOLOGY MODULES
    Abbasi, Ahmad
    Shekalgourabi, Hajar Roshan
    Hassanzadeh-Lelekaami, Dawood
    HONAM MATHEMATICAL JOURNAL, 2016, 38 (02): : 295 - 304
  • [23] Annihilators of Local Cohomology Modules
    Bahmanpour, Kamal
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (06) : 2509 - 2515
  • [24] On the top local cohomology modules
    Le Thanh Nhan
    Tran Do Minh Chau
    JOURNAL OF ALGEBRA, 2012, 349 (01) : 342 - 352
  • [25] ON THE COFINITENESS OF LOCAL COHOMOLOGY MODULES
    DELFINO, D
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1994, 115 : 79 - 84
  • [26] ON THE COMINIMAXNESS OF LOCAL COHOMOLOGY MODULES
    Ghasemi, G.
    A'zami, J.
    JOURNAL OF ALGEBRAIC SYSTEMS, 2025, 13 (01):
  • [27] Linearization of local cohomology modules
    Montaner, JA
    Zarzuela, S
    COMMUTATIVE ALGEBRA: INTERACTIONS WITH ALGEBRAIC GEOMETRY, 2003, 331 : 1 - 11
  • [28] Cofiniteness of Local Cohomology Modules
    Bahmanpour, Kamal
    Naghipour, Reza
    Sedghi, Monireh
    ALGEBRA COLLOQUIUM, 2014, 21 (04) : 605 - 614
  • [29] Cofiniteness of modules and local cohomology
    Hajar Sabzeh
    Reza Sazeedeh
    Rendiconti del Circolo Matematico di Palermo Series 2, 2024, 73 : 809 - 817
  • [30] Local Cohomology Modules and their Properties
    J. Azami
    M. Hasanzad
    Ukrainian Mathematical Journal, 2021, 73 : 311 - 319