Oil Prices Forecasting Using Modified Support Vector Machines

被引:0
|
作者
Lu Lin [1 ]
机构
[1] Guilin Univ Elect Technol, Sch Management, Guilin, Peoples R China
关键词
support vector machines; oil prices; particle swarm optimization;
D O I
暂无
中图分类号
F [经济];
学科分类号
02 ;
摘要
Oil is a kind of basis energy, its price fluctuations have an important impact on the operation of the world economy. AS the non-linear features of world oil prices, the paper uses support vector machines(SVM) technology for the oil price forecast. The method can be effective in the data space of the evolution operating of various non-linear to the corresponding linear operation in characteristics space, thereby greatly enhancing its ability to handle non-linear. To solve the problems of SVM in training for large-scale convergence, such as slow convergence, greet complexity, particle swarm optimization(PSO) is proposed for the secondary planning problem to enhance SVM computing speed. The modified SVM is applied to oil prices forecast, empirical studies show that the method has a high prediction accuracy and faster computing speed.
引用
收藏
页码:529 / 532
页数:4
相关论文
共 50 条
  • [31] Day-Ahead Load Forecasting using Support Vector Regression Machines
    Velasco, Lemuel Clark P.
    Polestico, Daisy Lou L.
    Abella, Dominique Michelle M.
    Alegata, Genesis T.
    Luna, Gabrielle C.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2018, 9 (03) : 22 - 27
  • [32] Short-term Wind Speed Forecasting using Support Vector Machines
    Pinto, Tiago
    Ramos, Sergio
    Sousa, Tiago M.
    Vale, Zita
    2014 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN DYNAMIC AND UNCERTAIN ENVIRONMENTS (CIDUE), 2014, : 40 - 46
  • [33] Electric load forecasting using support vector machines optimized by genetic algorithm
    Abbas, Syed Rahat
    Arif, Muhammad
    10TH IEEE INTERNATIONAL MULTITOPIC CONFERENCE 2006, PROCEEDINGS, 2006, : 395 - +
  • [34] Clustering based Short Term Load Forecasting using Support Vector Machines
    Jain, Amit
    Satish, B.
    2009 IEEE BUCHAREST POWERTECH, VOLS 1-5, 2009, : 495 - 502
  • [35] Monthly evaporation forecasting using artificial neural networks and support vector machines
    Gulay Tezel
    Meral Buyukyildiz
    Theoretical and Applied Climatology, 2016, 124 : 69 - 80
  • [36] Integrated Architecture for Short Term Load Forecasting using Support Vector Machines
    Jain, Amit
    Satish, B.
    2008 40TH NORTH AMERICAN POWER SYMPOSIUM (NAPS 2008), 2008, : 450 - 457
  • [37] Load forecasting using support vector machines: A study on EUNITE competition 2001
    Chen, BJ
    Chang, MW
    Lin, CJ
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2004, 19 (04) : 1821 - 1830
  • [38] Application of support vector machines in paying rate forecasting
    Wu Chong
    Chen Pu
    PROCEEDINGS OF THE 2006 INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE & ENGINEERING (13TH), VOLS 1-3, 2006, : 1494 - 1497
  • [39] Application of support vector machines to the modelling and forecasting of inflation
    Marcek, Milan
    Marcek, Dusan
    APPLIED ARTIFICIAL INTELLIGENCE, 2006, : 259 - +
  • [40] Sales forecasting based on support vector machines regression
    Bao, Y
    Zou, H
    Xu, C
    Proceedings of the Ninth IASTED International Conference on Artificial Intelligence and Soft Computing, 2005, : 217 - 221