A two-step, fourth-order method with energy preserving properties
被引:22
|
作者:
Brugnano, Luigi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Florence, Dipartimento Matemat U Dini, I-50121 Florence, ItalyUniv Florence, Dipartimento Matemat U Dini, I-50121 Florence, Italy
Brugnano, Luigi
[1
]
Iavernaro, Felice
论文数: 0引用数: 0
h-index: 0
机构:
Univ Florence, Dipartimento Matemat U Dini, I-50121 Florence, Italy
Univ Bari, Dipartimento Matemat, I-70121 Bari, ItalyUniv Florence, Dipartimento Matemat U Dini, I-50121 Florence, Italy
Iavernaro, Felice
[1
,2
]
Trigiante, Donato
论文数: 0引用数: 0
h-index: 0
机构:Univ Florence, Dipartimento Matemat U Dini, I-50121 Florence, Italy
Trigiante, Donato
机构:
[1] Univ Florence, Dipartimento Matemat U Dini, I-50121 Florence, Italy
[2] Univ Bari, Dipartimento Matemat, I-70121 Bari, Italy
Ordinary differential equations;
Mono-implicit methods;
Multistep methods;
One-leg methods;
Canonical Hamiltonian problems;
Hamiltonian boundary value methods;
Energy preserving methods;
Energy drift;
NUMERICAL-INTEGRATION;
TIME INTEGRATION;
HIGH-ORDER;
KUTTA;
CONSERVATION;
FORMULAS;
D O I:
10.1016/j.cpc.2012.04.002
中图分类号:
TP39 [计算机的应用];
学科分类号:
081203 ;
0835 ;
摘要:
We introduce a family of fourth-order two-step methods that preserve the energy function of canonical polynomial Hamiltonian systems. As is the case with linear mutistep and one-leg methods, a prerogative of the new formulae is that the associated nonlinear systems to be solved at each step of the integration procedure have the very same dimension of the underlying continuous problem. The key tools ill the new methods are the line integral associated with a conservative vector field (such as the one defined by a Hamiltonian dynamical system) and its discretization obtained by the aid of a quadrature formula. Energy conservation is equivalent to the requirement that the quadrature is exact, which turns out to be always the case in the event that the Hamiltonian function is a polynomial and the degree of precision of the quadrature formula is high enough. The non-polynomial case is also discussed and a number of test problems are finally presented in order to compare the behavior of the new methods to the theoretical results. (C) 2012 Elsevier B.V. All rights reserved.
机构:
Sichuan Normal Univ, Sch Math Sci, Chengdu 610068, Peoples R China
Sichuan Normal Univ, VC & VR Key Lab, Chengdu 610068, Peoples R ChinaSichuan Normal Univ, Sch Math Sci, Chengdu 610068, Peoples R China
Tian, Zhihui
Ran, Maohua
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Normal Univ, Sch Math Sci, Chengdu 610068, Peoples R China
Sichuan Normal Univ, VC & VR Key Lab, Chengdu 610068, Peoples R China
Aba Teachers Univ, Sch Math, Aba 623002, Peoples R ChinaSichuan Normal Univ, Sch Math Sci, Chengdu 610068, Peoples R China
Ran, Maohua
Liu, Yang
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Normal Univ, Sch Math Sci, Chengdu 610068, Peoples R China
Sichuan Normal Univ, VC & VR Key Lab, Chengdu 610068, Peoples R ChinaSichuan Normal Univ, Sch Math Sci, Chengdu 610068, Peoples R China
机构:
Huaiyin Normal Univ, Sch Math Sci, Huaian 223300, Jiangsu, Peoples R ChinaHuaiyin Normal Univ, Sch Math Sci, Huaian 223300, Jiangsu, Peoples R China
Cai, Jiaxiang
Liang, Hua
论文数: 0引用数: 0
h-index: 0
机构:
Huaiyin Normal Univ, Sch Math Sci, Huaian 223300, Jiangsu, Peoples R ChinaHuaiyin Normal Univ, Sch Math Sci, Huaian 223300, Jiangsu, Peoples R China
Liang, Hua
Yang, Bin
论文数: 0引用数: 0
h-index: 0
机构:
Huaiyin Normal Univ, Sch Math Sci, Huaian 223300, Jiangsu, Peoples R ChinaHuaiyin Normal Univ, Sch Math Sci, Huaian 223300, Jiangsu, Peoples R China
机构:
Univ Pau & Pays Adour, Inria Bordeaux Sud Ouest, Magique Team 3D, Pau, FranceUniv Pau & Pays Adour, Inria Bordeaux Sud Ouest, Magique Team 3D, Pau, France
机构:
Chinese Acad Sci, Inst Modern Phys, Lanzhou, Gansu, Peoples R ChinaChinese Acad Sci, Inst Modern Phys, Lanzhou, Gansu, Peoples R China
Dong, J. M.
Zuo, W.
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Modern Phys, Lanzhou, Gansu, Peoples R China
Univ Chinese Acad Sci, Sch Phys, Beijing, Peoples R ChinaChinese Acad Sci, Inst Modern Phys, Lanzhou, Gansu, Peoples R China
Zuo, W.
Gu, J. Z.
论文数: 0引用数: 0
h-index: 0
机构:
China Inst Atom Energy, Beijing, Peoples R ChinaChinese Acad Sci, Inst Modern Phys, Lanzhou, Gansu, Peoples R China
机构:
Univ Fed Ceara, Math Dept, Fortaleza, Ceara, BrazilUniv Fed Ceara, Math Dept, Fortaleza, Ceara, Brazil
Avalos, Rodrigo
Laurain, Paul
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris, Inst Math Jussieu, Batiment Sophie Germain,Case 7052, F-75205 Paris 13, France
PSL Res Univ, CNRS, Ecole Normale Super, DMA, F-75005 Paris, FranceUniv Fed Ceara, Math Dept, Fortaleza, Ceara, Brazil
Laurain, Paul
Lira, Jorge H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Ceara, Math Dept, Fortaleza, Ceara, BrazilUniv Fed Ceara, Math Dept, Fortaleza, Ceara, Brazil
机构:
E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China
Shanghai Normal Univ, E Inst Shanghai Univ, Div Computat Sci, Shanghai 200234, Peoples R ChinaE China Normal Univ, Dept Math, Shanghai 200062, Peoples R China
Wang, Yuan-Ming
Guo, Ben-Yu
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Normal Univ, E Inst Shanghai Univ, Div Computat Sci, Shanghai 200234, Peoples R China
Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R ChinaE China Normal Univ, Dept Math, Shanghai 200062, Peoples R China