Clustering sequence data using hidden Markov model representation

被引:10
|
作者
Li, C [1 ]
Biswas, G [1 ]
机构
[1] Vanderbilt Univ, Dept Comp Sci, Nashville, TN 37235 USA
关键词
clustering; hidden Markov model; model selection; Bayesian Information Criterion(BIC); mutual information;
D O I
10.1117/12.339979
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposed a clustering methodology for sequence data using hidden Markov model(HMM) representation. The proposed methodology improves upon existing HMM based clustering methods in two ways: (i) it enables HMMs to dynamically change its model structure to obtain a better fit model for data during clustering process, and (ii) it provides objective criterion function to select the optimal clustering partition. The algorithm is presented in terms of four nested levels of searches: (i) the search. for the optimal number of clusters in a partition, (ii) the search for the optimal structure for a given partition, (iii) the search for the optimal HMM structure for each cluster, and (iv) the search for the optimal HMM parameters for each HMM. Preliminary results are given to support the proposed methodology.
引用
收藏
页码:14 / 21
页数:4
相关论文
共 50 条
  • [41] HIDDEN MARKOV REPRESENTATION OF MICROCREDIT
    Giva, Maria Angela A.
    Luy, Jasmin-Mae S.
    Segui, Mary Elizabeth R.
    JOURNAL OF THE INDONESIAN MATHEMATICAL SOCIETY, 2024, 30 (02) : 218 - 235
  • [43] A clustering approach for estimating parameters of a profile hidden Markov model
    Aghdam, Rosa
    Pezeshk, Hamid
    Malekpour, Seyed Amir
    Shemehsavar, Soudabeh
    Eslahchi, Changiz
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2013, 8 (01) : 66 - 82
  • [44] Gene clustering with hidden Markov model optimized by PSO algorithm
    Mohammad Soruri
    Javad Sadri
    S. Hamid Zahiri
    Pattern Analysis and Applications, 2018, 21 : 1121 - 1126
  • [45] Supply Sequence Modelling Using Hidden Markov Models
    Borucka, Anna
    Kozlowski, Edward
    Parczewski, Rafal
    Antosz, Katarzyna
    Gil, Leszek
    Pieniak, Daniel
    APPLIED SCIENCES-BASEL, 2023, 13 (01):
  • [46] Gene clustering with hidden Markov model optimized by PSO algorithm
    Soruri, Mohammad
    Sadri, Javad
    Zahiri, S. Hamid
    PATTERN ANALYSIS AND APPLICATIONS, 2018, 21 (04) : 1121 - 1126
  • [47] Direct training of subspace distribution clustering hidden Markov model
    Mak, BKW
    Bocchieri, E
    IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, 2001, 9 (04): : 378 - 387
  • [48] A Latent Hidden Markov Model for Process Data
    Tang, Xueying
    PSYCHOMETRIKA, 2024, 89 (01) : 205 - 240
  • [49] A Latent Hidden Markov Model for Process Data
    Xueying Tang
    Psychometrika, 2024, 89 : 205 - 240
  • [50] REPRESENTATION OF HIDDEN MARKOV MODEL FOR NOISE ADAPTIVE SPEECH RECOGNITION
    LEE, LM
    WANG, HC
    ELECTRONICS LETTERS, 1995, 31 (08) : 616 - 617