Effect of Mechanical Strain on the Collagen VI Pericellular Matrix in Anterior Cruciate Ligament Fibroblasts

被引:12
|
作者
Sardone, Francesca [1 ,2 ]
Traina, Francesco [3 ]
Tagliavini, Francesca [2 ]
Pellegrini, Camilla [2 ]
Merlini, Luciano [2 ]
Squarzoni, Stefano [1 ,2 ]
Santi, Spartaco [1 ,2 ]
Neri, Simona [4 ]
Faldini, Cesare [3 ]
Maraldi, Nadir [2 ]
Sabatelli, Patrizia [1 ,2 ]
机构
[1] Natl Res Council Italy, Inst Mol Genet, Bologna, Italy
[2] IOR IRCCS, SC Lab Musculoskeletal Cell Biol, Bologna, Italy
[3] Univ Bologna, Rizzoli Orthopaed Inst, Bologna, Italy
[4] Rizzoli Orthopaed Inst, Lab RAMSES, SC Lab Immunorheumatol & Tissue Regenerat, Bologna, Italy
关键词
NG2; PROTEOGLYCAN; EXTRACELLULAR-MATRIX; GENE-EXPRESSION; OSTEOARTHRITIC CHANGES; MUSCULAR-DYSTROPHY; ALPHA-6; CHAINS; CORE PROTEIN; IN-VITRO; CELLS; BIGLYCAN;
D O I
10.1002/jcp.24518
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Cell-extracellular matrix interaction plays a major role in maintaining the structural integrity of connective tissues and sensing changes in the biomechanical environment of cells. Collagen VI is a widely expressed non-fibrillar collagen, which regulates tissues homeostasis. The objective of the present investigation was to extend our understanding of the role of collagen VI in human ACL. This study shows that collagen VI is associated both in vivo and in vitro to the cell membrane of knee ACL fibroblasts, contributing to the constitution of a microfibrillar pericellular matrix. In cultured cells the localization of collagen VI at the cell surface correlated with the expression of NG2 proteoglycan, a major collagen VI receptor. The treatment of ACL fibroblasts with anti-NG2 antibody abolished the localization of collagen VI indicating that collagen VI pericellular matrix organization in ACL fibroblasts is mainly mediated by NG2 proteoglycan. In vitro mechanical strain injury dramatically reduced the NG2 proteoglycan protein level, impaired the association of collagen VI to the cell surface, and promoted cell cycle withdrawal. Our data suggest that the injury-induced alteration of specific cell-ECM interactions may lead to a defective fibroblast self-renewal and contribute to the poor regenerative ability of ACL fibroblasts. J. Cell. Physiol. 229: 878-886, 2014. (c) 2013 Wiley Periodicals, Inc.
引用
收藏
页码:878 / 886
页数:9
相关论文
共 50 条
  • [31] MEASUREMENT OF MECHANICAL PROPERTIES OF THE ANTERIOR CRUCIATE LIGAMENT.
    Rogers, G.J.
    Milthorpe, B.K.
    Muratore, A.
    Schindhelm, K.
    Australasian Physical and Engineering Sciences in Medicine, 1985, 8 (04): : 168 - 171
  • [32] MECHANICAL-PROPERTIES OF THE HUMAN ANTERIOR CRUCIATE LIGAMENT
    JONES, RS
    NAWANA, NS
    PEARCY, MJ
    LEARMONTH, DJA
    BICKERSTAFF, DR
    COSTI, JJ
    PATERSON, RS
    CLINICAL BIOMECHANICS, 1995, 10 (07) : 339 - 344
  • [33] THE MECHANICAL-BEHAVIOR OF THE ANTERIOR CRUCIATE LIGAMENT OF THE KNEE
    WESBECKER, JP
    BENAZET, JP
    SAILLANT, G
    ROYCAMILLE, R
    REVUE DE CHIRURGIE ORTHOPEDIQUE ET REPARATRICE DE L APPAREIL MOTEUR, 1988, 74 : 187 - 188
  • [34] TGF-beta1 induces the different expressions of lysyl oxidases and matrix metalloproteinases in anterior cruciate ligament and medial collateral ligament fibroblasts after mechanical injury
    Xie, Jing
    Wang, Chunli
    Huang, Dong-yue
    Zhang, Yanyan
    Xu, Jianwen
    Kolesnikov, Stanislav S.
    Sung, K. L. Paul
    Zhao, Hucheng
    JOURNAL OF BIOMECHANICS, 2013, 46 (05) : 890 - 898
  • [35] The Influence of Anterior Cruciate Ligament Matrix Mechanical Properties on Simulated Whole-Knee Biomechanics
    Rosario, Ryan
    Marchi, Benjamin C.
    Arruda, Ellen M.
    Coleman, Rhima M.
    JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2020, 142 (12):
  • [36] Gene expression of type I and type III collagen by mechanical stretch in anterior cruciate ligament cells
    Kim, SG
    Akaike, T
    Sasagawa, T
    Atomi, Y
    Kurosawa, H
    CELL STRUCTURE AND FUNCTION, 2002, 27 (03) : 139 - 144
  • [37] The Effect of Mechanical Varus on Anterior Cruciate Ligament and Lateral Collateral Ligament Stress: Finite Element Analyses
    Hinckel, Betina B.
    Demange, Marco K.
    Gobbi, Riccardo G.
    Pecora, Jose Ricardo
    Camanho, Gilberto Luis
    ORTHOPEDICS, 2016, 39 (04) : E729 - E736
  • [38] Effect of Menisci Presence on Anterior Cruciate Ligament Stress and Strain in a Finite Element Model
    Nyman, Edward, Jr.
    Ingels, Marcel L.
    Amerinatanzi, Amirhesam
    Summers, Rodney K.
    Hewett, Timothy E.
    Goel, Vijay K.
    MEDICINE AND SCIENCE IN SPORTS AND EXERCISE, 2016, 48 (05): : 888 - 888
  • [39] Effect of testosterone on the female anterior cruciate ligament
    Lovering, RM
    Romani, WA
    AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY INTEGRATIVE AND COMPARATIVE PHYSIOLOGY, 2005, 289 (01) : R15 - R22
  • [40] Elastogenesis by torn anterior cruciate ligament fibroblasts: tissue engineering perspectives
    Brune, T
    Black, A
    Liabeuf, S
    Baali, M
    Thillou, F
    Meiller, J
    Fuente, F
    Sommer, P
    Romette, JL
    MATRIX BIOLOGY, 2004, 23 (06) : 395 - 396