Oxidant-Induced High-Efficient Mussel-Inspired Modification on PVDF Membrane with Superhydrophilicity and Underwater Superoleophobicity Characteristics for Oil/Water Separation

被引:136
|
作者
Luo, Chongdan [1 ]
Liu, Qingxia [1 ]
机构
[1] Univ Alberta, Dept Chem & Mat Engn, Donadeo Innovat Ctr Engn, Edmonton, AB T6G 1H9, Canada
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
polydopamine; microfiltration; superhydrophilicity; underwater superoleophobicity; oil/water separation; SURFACE MODIFICATION; POLYMER MEMBRANES; OIL; WATER; POLYDOPAMINE; HYDROPHILICITY; PLASMA; FABRICATION; POLY(DOPA); PROGRESS;
D O I
10.1021/acsami.6b16206
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work, a facile one-step approach was developed to modify hydrophobic polyvinylidene fluoride (PVDF) microfiltration membrane with superhydrophilicity and underwater superoleophobicity properties via a high-efficient deposition of polydopamine (PDA) coating oxidized by sodium periodate in a slightly acidic environment (pH = 5.0). In contrast to the traditional PDA coating on hydrophobic membranes autoxidized by O-2 in a weak basic buffer solution, the superhydrophilicity and ultrahigh pure water permeability (about 11 934 L m(-2) h(-1) under 0.038 MPa) of the PDA-decorated PVDF membrane are derived from optimized chemical oxidation without postmoclifications or additional reactants. The as-prepared membrane exhibits excellent oil/water separation ability evaluated by water fluxes and oil rejection ratios of various oil/water mixtures and oil-in-water emulsions. Moreover, the outstanding antifouling performance and reusability of the PDA-modified PVDF membrane provide a long-term durability for many potential applications. The modified membrane also exhibits excellent chemical stability in harsh pH environments and mechanical stability for practical applications.
引用
收藏
页码:8297 / 8307
页数:11
相关论文
共 50 条
  • [21] Asymmetric Janus membranes based on in situ mussel-inspired chemistry for efficient oil/water separation
    Song, Hai-Ming
    Chen, Cheng
    Shui, Xiao-Xue
    Yang, Hao
    Zhu, Li-Jing
    Zeng, Zhi-Xiang
    Xue, Qun-Ji
    JOURNAL OF MEMBRANE SCIENCE, 2019, 573 : 126 - 134
  • [22] One-Pot Fabrication of Superhydrophilic/Underwater Superoleophobic Membrane Based on Mussel-Inspired Chemistry for High-Efficiency Oil-Water Separation
    Yan, Zhuo
    Zhou, Zhiping
    Zhang, Ziwei
    Zhang, Ruilong
    Cui, Jiuyun
    Dai, Jiangdong
    NANO, 2022, 17 (05)
  • [23] Calcium ions enhanced mussel-inspired underwater superoleophobic coating with superior mechanical stability and hot water repellence for efficient oil/water separation
    Wang, Jintao
    Liu, Shuyu
    Guo, Shengwei
    APPLIED SURFACE SCIENCE, 2020, 503
  • [24] A Ni-based metal hydroxide-organic framework mesh membrane with ultra-durable underwater superoleophobicity for high-efficient oil/ water separation
    Zeng, Huan
    Wu, Caiqin
    Zhou, Jialing
    Yao, Chenling
    Li, Guilong
    Yu, Chuanghui
    Wang, Jian
    Dong, Hua
    Xu, Zhe
    Jiang, Lei
    JOURNAL OF MEMBRANE SCIENCE, 2025, 715
  • [25] Nanowire-Haired Inorganic Membranes with Superhydrophilicity and Underwater Ultralow Adhesive Superoleophobicity for High-Efficiency Oil/Water Separation
    Zhang, Feng
    Zhang, Wen Bin
    Shi, Zhun
    Wang, Dong
    Jin, Jian
    Jiang, Lei
    ADVANCED MATERIALS, 2013, 25 (30) : 4192 - 4198
  • [26] One-step electrospinning cellulose nanofibers with superhydrophilicity and superoleophobicity underwater for high-efficiency oil-water separation
    Shu, Dengkun
    Xi, Peng
    Cheng, Bowen
    Wang, Yan
    Yang, Long
    Wang, Xiaoqing
    Yan, Xuhuan
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2020, 162 : 1536 - 1545
  • [27] Flexible PDA@ACNTs decorated polymer nanofiber composite with superhydrophilicity and underwater superoleophobicity for efficient separation of oil-in-water emulsion
    Huang, Xuewu
    Zhang, Shu
    Xiao, Wei
    Luo, Junchen
    Li, Bei
    Wang, Ling
    Xue, Huaiguo
    Gao, Jiefeng
    JOURNAL OF MEMBRANE SCIENCE, 2020, 614
  • [28] Superhydrophilic and oleophobic sponges prepared based on Mussel-Inspired chemistry for efficient oil-water separation
    Sun, Jianteng
    Gao, Feng
    Hu, Jingwen
    Qi, Zhixian
    Huang, Yue
    Guo, Yonggui
    Chen, Ying
    Wei, Junfu
    Zhang, Huan
    Pang, Qianchan
    Wang, Huicai
    Zhang, Xiaoqing
    CHEMISTRY-AN ASIAN JOURNAL, 2024, 19 (03)
  • [29] Biobased mussel-inspired underwater superoleophobic chitosan derived complex hydrogel coated cotton fabric for oil/water separation
    Wang, Meng
    Hu, Dan-Dan
    Li, Yi-Dong
    Peng, Hua-Qiao
    Zeng, Jian-Bing
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2022, 209 : 279 - 289
  • [30] Mussel-Inspired Fabrication of PDA@PAN Electrospun Nanofibrous Membrane for Oil-in-Water Emulsion Separation
    Zhao, Haodong
    He, Yali
    Wang, Zhihua
    Zhao, Yanbao
    Sun, Lei
    NANOMATERIALS, 2021, 11 (12)