In situ forming chitosan/hydroxyapatite rods reinforced via genipin crosslinking

被引:12
|
作者
Pu, Xi-ming [1 ]
Wei, Kai [1 ]
Zhang, Qi-qing [1 ,2 ,3 ]
机构
[1] Xiamen Univ, Coll Mat, Dept Mat Sci & Engn, Xiamen 361005, Peoples R China
[2] Chinese Acad Med Sci, Inst Biomed Engn, Tianjin 300192, Peoples R China
[3] Peking Union Med Coll, Key Lab Biomed Mat Tianjin, Tianjin 300192, Peoples R China
基金
国家科技攻关计划;
关键词
Chitosan; Hydroxyapatite; Genipin; Composite materials; Multilayer structure; CHITOSAN; FABRICATION; HYDROXYAPATITE/CHITOSAN; NANOPARTICLES; MEMBRANE; FIXATION; FRACTURE;
D O I
10.1016/j.matlet.2012.12.009
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Chitosan/hydroxyapatite composite rods are good candidates as temporary mechanical supports in bone regeneration; however the mechanical properties of this kind of materials should be improved. In this work, chitosan/hydroxyapatite composite rods with multilayer structure were reinforced using a bio-crosslinker to improve their mechanical properties and anti-degradation ability. The SEM results revealed that the composite rods had a tree-ring structure. The bending strength and bending modulus of the crosslinked rods could arrive at 161 MPa and 7.2 GPa, respectively, increased by 59.4% and 26.3% compared with uncrosslinked ones (p < 0.05). The enzymatic degradation studies indicated that genipin crosslinking could effectively enhance the biostability of the composite rods. Consequently, genipin-crosslinked chitosan/hydroxyapatite composite rods with excellent mechanical properties would be a novel device used for internal fixation of bone fracture. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:169 / 171
页数:3
相关论文
共 50 条
  • [41] In situ-forming chitosan/nano-hydroxyapatite/collagen gel for the delivery of bone marrow mesenchymal stem cells
    Huang, Zhi
    Yu, Bo
    Feng, Qingling
    Li, Songjian
    Chen, Yan
    Luo, Luqiao
    CARBOHYDRATE POLYMERS, 2011, 85 (01) : 261 - 267
  • [42] Preparation of magnetic iron oxide/hydroxyapatite/cbtirosan rods by in situ precipitation
    Chen Fuping
    Hu Qiaoling
    Chen Lang
    Li Baoqiang
    Shen Jiacong
    ACTA POLYMERICA SINICA, 2006, (06): : 756 - 760
  • [43] Modulation of nano-hydroxyapatite size via formation on chitosan-gelatin network film in situ
    Li, Junjie
    Chen, YiPing
    Yin, Yuji
    Yao, Fanglian
    Yao, Kangde
    BIOMATERIALS, 2007, 28 (05) : 781 - 790
  • [44] Synthesis and Characterization of Hydroxyapatite Composite from Cuttlebone (Sepia sp.) with Chitosan via In Situ as Antibacterial
    Jamarun, Novesar
    Caniago, Sintia
    Septiani, Upita
    Prasejati, Arika
    Wulandari, Wulandari
    Amirullah, Tri Yupi
    CHEMISTRYSELECT, 2024, 9 (03):
  • [45] Fabrication of Antibacterial and Antiwear Hydroxyapatite Coatings via In Situ Chitosan-Mediated Pulse Electrochemical Deposition
    Yan, Ling
    Xiang, Yi
    Yu, Jia
    Wang, Yingbo
    Cui, Wenguo
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (05) : 5023 - 5030
  • [46] In Situ Forming Chitosan Hydrogels Prepared via Ionic/Covalent Co-Cross-Linking
    Jose Moura, M.
    Faneca, H.
    Pedroso Lima, M.
    Helena Gil, M.
    Margarida Figueiredo, M.
    BIOMACROMOLECULES, 2011, 12 (09) : 3275 - 3284
  • [47] Preparation and Properties on Silk Fibers Reinforced Hydroxyapatite/Chitosan Composites
    Wang, J.
    Sun, Q. Z.
    Gao, J.
    Liu, D. M.
    Meng, X. C.
    Li, M. Q.
    CHINESE CERAMICS COMMUNICATIONS, 2010, 105-106 : 557 - +
  • [48] Characterization of spongy and porous chitosan scaffolds reinforced with hydroxyapatite.
    Schutt, J
    Satsangi, A
    Ong, J
    Satsangi, N
    JOURNAL OF DENTAL RESEARCH, 2002, 81 : A274 - A274
  • [49] Structure and stability analysis of biocompatible hydroxyapatite reinforced chitosan nanocomposite
    Chakraborty, Himel
    Bhowmik, Nandagopal
    POLYMER COMPOSITES, 2018, 39 : E573 - E583
  • [50] Hydroxyapatite composites reinforced by in situ columnar mullite crystal
    Mu, Bai-Chun
    Li, Qiang
    Yu, Jing-Yuan
    Wang, Zheng
    Fenmo Yejin Cailiao Kexue yu Gongcheng/Materials Science and Engineering of Powder Metallurgy, 2013, 18 (02): : 276 - 280