Fiducial Interval Estimation of Scale Parameter of Lognormal Population Distribution

被引:0
|
作者
Li Xiuzhen [1 ]
Li Quanquan [2 ]
Ma Yanying [1 ]
Zhu Lisa [1 ]
Zhang Na [3 ]
机构
[1] Jiliin Engn Normal Univ, Media & Math Inst, Jilin, Jiliin, Peoples R China
[2] Guo Jiadiansenior Middle Sch, Math Room, Lishou, Jiliin, Peoples R China
[3] Shenyang Jianzhu Univ, Coll Art & Design, Shenyang, Peoples R China
来源
PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON EDUCATION, MANAGEMENT, COMPUTER AND SOCIETY | 2016年 / 37卷
关键词
lognormal population; fiducial distribution; interval estimation; method of fiducial inference; scale parameter; INFERENCE;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Using a new method to solve fiducial interval estimation of parameter, the method of fiducial inference can obtain the fiducial interval estimation of scale parameter of lognormal population distribution. the method intuitive novelty special. But fiducial distribution maybe different if use different inference method while looking for fiducial distribution, this cause the interval of the parameter that we achieved not unique. We can receive very similar interval estimation by use of fiducial inference and Neyman's method, sometimes even exactly the same, but it is completely different in explanation; while sometimes the result we received by use of fiducial inference is better than use of Neyman's theory, even can solve the problem that the theory of Neyman can not solve. All these fully shown the special and novelty of the method.
引用
收藏
页码:1504 / 1506
页数:3
相关论文
共 50 条
  • [21] Easy estimation by a new parameterization for the three-parameter lognormal distribution
    Komori, Y
    Hirose, H
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2004, 74 (01) : 63 - 74
  • [22] Empirical comparison of several methods for parameter estimation of a shifted lognormal distribution
    Muñoz D.F.
    Ruiz C.
    Guzman S.
    Informacion Tecnologica, 2016, 27 (03): : 131 - 140
  • [23] Discussion on approximated estimation method of the three-parameter lognormal distribution
    Li, Mengwen
    Mao, Jingwen
    Zhan, Mingguo
    Ye, Huishou
    Guo, Baojian
    Chai, Fengmei
    Xu, Qinghong
    Mineral Deposit Research: Meeting the Global Challenge, Vols 1 and 2, 2005, : 1475 - 1478
  • [24] MODIFIED MOMENT ESTIMATION FOR THE 3-PARAMETER LOGNORMAL-DISTRIBUTION
    COHEN, AC
    WHITTEN, BJ
    DING, Y
    JOURNAL OF QUALITY TECHNOLOGY, 1985, 17 (02) : 92 - 99
  • [25] SMALL-SAMPLE ESTIMATION FOR LOGNORMAL DISTRIBUTION WITH UNIT SHAPE PARAMETER
    GIBBONS, DI
    MCDONALD, GC
    IEEE TRANSACTIONS ON RELIABILITY, 1975, 24 (05) : 290 - 295
  • [26] Interval estimation for the scale parameter of the two-parameter exponential distribution based on time-censored data
    Thiagarajah, K
    Paul, SR
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1997, 59 (02) : 279 - 289
  • [27] Estimation for the three-parameter lognormal distribution based on progressively censored data
    Basak, Prasanta
    Basak, Indrani
    Balakrishnan, N.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (10) : 3580 - 3592
  • [29] ESTIMATION FOR 3-PARAMETER LOGNORMAL-DISTRIBUTION WITH UNKNOWN SHIFTED ORIGIN
    IWASE, K
    KANEFUJI, K
    STATISTICAL PAPERS, 1994, 35 (01) : 81 - 90
  • [30] Monte Carlo comparison of estimation methods for the two-parameter lognormal distribution
    Pobocikova, Ivana
    Sedliackova, Zuzana
    Michalkova, Maria
    Kucharikova, Lenka
    XXIII POLISH-SLOVAK SCIENTIFIC CONFERENCE ON MACHINE MODELLING AND SIMULATIONS (MMS 2018), 2019, 254