High pressure infiltration sintering behavior of WC-Co alloys

被引:9
|
作者
Fan, Xiaoqin [1 ,2 ]
He, Duanwei [1 ,2 ]
Wang, Pei [1 ,2 ]
Li, Dong [2 ]
Liu, Yinjuan [1 ,2 ]
Ma, Dejiang [1 ,2 ]
Du, Yanchun [1 ,2 ]
Gao, Shangpan [1 ,2 ]
Kou, Zili [1 ,2 ]
机构
[1] Sichuan Univ, Inst Atom & Mol Phys, Chengdu 610065, Peoples R China
[2] Sichuan Univ, Key Lab High Energy Dens Phys & Technol, Minist Educ, Chengdu 610065, Peoples R China
基金
中国国家自然科学基金;
关键词
WC; melt cobalt; high pressure infiltration sintering; uniform distribution; TUNGSTEN CARBIDE; MECHANICAL-PROPERTIES; HARDMETALS; MICROSTRUCTURE; COMPOSITES; TOUGHNESS;
D O I
10.1080/08957959.2016.1221950
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, two average tungsten carbide particle sizes of 2, 0.5m are placed respectively, in contact with a WC-16Co substrate, pressed at the pressure of 4.5-5.5GPa, and heated to temperatures ranging from 1350 degrees C to 1500 degrees C in a large-volume cubic press. During the process Co was forced out of the WC-16Co substrate into the compressed powder. The resulting infiltrated samples were characterized using X-ray diffraction (XRD), scanning electron microscope (SEM), Vickers hardness and cutting performance tests. The results of XRD confirmed that the sintered bulks have WC and Co phases. The scanning electron microscopy (SEM) analysis reveals that the WC grains in well-sintered alloys are round in shape and cobalt with lower content is uniformly dispersed in the WC grain boundaries. The sintered sub-micron WC-Co alloy with a cobalt content of 3.8wt% exhibits a prominent combination of high hardness value of 23.1GPa and a large fracture toughness value of 8.6MPam(1/2). The high-speed cutting tests indicating its cutting performance is significantly superior to the commercial YG6X (WC-6wt%Co with WC grain size of 0.5m).
引用
收藏
页码:585 / 594
页数:10
相关论文
共 50 条
  • [1] HIGH-PRESSURE SINTERING OF WC POWDER AND WC-CO MIXED POWDER
    KUDAKA, K
    KOONO, H
    TRANSACTIONS OF THE JAPAN INSTITUTE OF METALS, 1967, 8 (03): : 207 - &
  • [2] Sintering behavior of nanostructured WC-Co composite
    Kumar, Akshay
    Singh, K.
    Pandey, O. P.
    CERAMICS INTERNATIONAL, 2011, 37 (04) : 1415 - 1422
  • [3] BORON AS SINTERING ADDITIVE IN CEMENTED WC-CO (OR NI) ALLOYS
    GOEURIOT, P
    THEVENOT, F
    BOUAOUDJA, N
    FANTOZZI, G
    CERAMICS INTERNATIONAL, 1987, 13 (02) : 99 - 103
  • [4] On the dissolution of WC in WC-Co alloys
    Seo, Osung
    Kang, Shinhoo
    SCIENCE OF ENGINEERING CERAMICS III, 2006, 317-318 : 263 - 266
  • [5] On the formation of very large WC crystals during sintering of ultrafine WC-Co alloys
    Sommer, M
    Schubert, WD
    Zobetz, E
    Warbichler, P
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2002, 20 (01): : 41 - 50
  • [6] Effect of Cr addition on solid state sintering of WC-Co alloys
    Bounhoure, V.
    Lay, S.
    Coindeau, S.
    Norgren, S.
    Pauty, E.
    Missiaen, J. M.
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2015, 52 : 21 - 28
  • [7] Field effects in WC-Co sintering
    Groza, JR
    Oakes, J
    ADVANCES IN POWDER METALLURGY & PARTICULATE MATERIALS - 1997, 1997, : 1251 - 1260
  • [8] Sintering of WC-Co powder with nanocrystalline WC by spark plasma sintering
    Wang Xingqing
    Xie Yingang
    Guo Hailiang
    Van der Biest, O.
    Vleuge, J.
    RARE METALS, 2006, 25 (03) : 246 - 252
  • [9] Sintering of WC-Co powder with nanocrystalline WC by spark plasma sintering
    O. Van der Biest
    J. Vleugels
    Rare Metals, 2006, (03) : 246 - 252
  • [10] Morphology of WC grains in WC-Co alloys
    Lay, S.
    Allibert, C. H.
    Christensen, M.
    Wahnstrom, G.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 486 (1-2): : 253 - 261