Facile synthesis of novel Si nanoparticles-graphene composites as high-performance anode materials for Li-ion batteries

被引:53
|
作者
Zhou, Min [1 ]
Pu, Fan [1 ]
Wang, Zhao [1 ]
Cai, Tingwei [1 ]
Chen, Hao [1 ]
Zhang, Haiyong [1 ]
Guan, Shiyou [1 ]
机构
[1] E China Univ Sci & Technol, Sch Mat Sci & Engn, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
LITHIUM STORAGE PROPERTIES; CORE-SHELL NANOWIRES; HIGH-CAPACITY; NEGATIVE ELECTRODE; SILICON NANOWIRES; OXIDE; NANOCOMPOSITE; SHEETS; DISCHARGE; INSERTION;
D O I
10.1039/c3cp51276b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Improving the Li storage properties of a Si negative electrode is of great significance for Li-ion batteries. A major challenge is to fabricate Si-based active materials with good electronic conduction and structural integrity in the process of discharging and charging. In this study, novel Si nanoparticles-graphene composites have been synthesized by hybrid electrostatic assembly between positively charged aminopropyltriethoxysilane modified Si nanoparticles and negatively charged graphene oxide, followed by thermal reduction. Commercially available Si nanoparticles are well embedded and uniformly dispersed into the graphene sheets, and the typically wrinkled graphene sheets form a network and cover the highly dispersed Si nanoparticles well. No any obvious aggregation of the Si nanoparticles can be found and many nanospaces exist around the Si nanoparticles, which provide buffering spaces needed for volume changes of Si nanoparticles during insertion/extraction of Li. High capacity and long cycle life (822 mA h g(-1) after 100 cycles at a current density of 0.1 A g(-1)) have been realized in the novel Si nanoparticles-graphene composites for Li-ion batteries. The excellent electrochemical performance is ascribed to the uniform distribution of Si nanoparticles and graphene, which effectively prevents aggregation and pulverization of Si nanoparticles, keeps the overall electrode highly conductive, and maintains the stability of the structure.
引用
收藏
页码:11394 / 11401
页数:8
相关论文
共 50 条
  • [31] Graphene and graphene/binary transition metal oxide composites as anode materials in Li-ion batteries
    Marka, Sandeep K.
    Srikanth, Vadali V.S.S.
    Nanoscience and Nanotechnology - Asia, 2015, 5 (02): : 90 - 108
  • [32] Facile synthesis of ZnFe2O4-graphene aerogels composites as high-performance anode materials for lithium ion batteries
    Wang, Yu
    Jin, Yuhong
    Zhang, Rupeng
    Jia, Mengqiu
    APPLIED SURFACE SCIENCE, 2017, 413 : 50 - 55
  • [34] Facile synthesis of graphene encapsulated MnO nanorods as anode material for Li-ion batteries
    Long, Bo
    Zhou, Xiangyang
    Tang, Jingjing
    Yang, Juan
    CHEMICAL PHYSICS LETTERS, 2018, 710 : 129 - 132
  • [35] Ti-Fe-Si/C composites as anode materials for high energy li-ion batteries
    Nuhu, Bage Alhamdu
    Adun, Humphrey
    Bamisile, Olusola
    Mukhtar, Mustapha
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2022, 44 (02) : 5154 - 5171
  • [36] High-performance anode materials based on 3D orderly and vertically macroporous graphene-Si framework for Li-ion batteries
    Fengjuan Miao
    Wanjuan Cong
    Rui Miao
    Na Wang
    Wenyi Wu
    Yu Zang
    Cuiping Shi
    Lei Zhu
    Bairui Tao
    Paul K. Chu
    Ionics, 2019, 25 : 467 - 473
  • [37] Search for New Anode Materials for High Performance Li-Ion Batteries
    Roy, Kingshuk
    Banerjee, Abhik
    Ogale, Satishchandra
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (18) : 20326 - 20348
  • [38] Facile synthesis of heterogeneous Ni-Si@C nanocomposites as high-performance anodes for Li-ion batteries
    Lee, Duk-Hee
    Shim, Hyun-Woo
    Kim, Doug-Wan
    ELECTROCHIMICA ACTA, 2014, 146 : 60 - 67
  • [39] SnOx/graphene anode material with multiple oxidation states for high-performance Li-ion batteries
    Zhang, Wenlan
    Zheng, Maojun
    Li, Fanggang
    You, Yuxiu
    Jiang, Dongkai
    Yuan, Hao
    Ma, Li
    Shen, Wenzhong
    NANOTECHNOLOGY, 2021, 32 (19)
  • [40] High-performance anode materials based on 3D orderly and vertically macroporous graphene-Si framework for Li-ion batteries
    Miao, Fengjuan
    Cong, Wanjuan
    Miao, Rui
    Wang, Na
    Wu, Wenyi
    Zang, Yu
    Shi, Cuiping
    Zhu, Lei
    Tao, Bairui
    Chu, Paul K.
    IONICS, 2019, 25 (02) : 467 - 473