Content-Based Image Retrieval using Convolutional Neural Networks

被引:0
|
作者
Rian, Zakhayu [1 ]
Christanti, Viny [1 ]
Hendryli, Janson [1 ]
机构
[1] Tarumangara Univ, Fac Informat Technol, Jakarta, Indonesia
关键词
cosine similarity; content-based image retrieval; convolutional neural networks; deep learning; VGG16;
D O I
10.1109/icsigsys.2019.8811089
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Searching a collection of images that have similarities with input images, without knowing the name of the image, makes a search system that applies the concept of content-based image retrieval (CBIR), is very necessary. In general, CBIR systems use visual features such as color, image edge, texture, and suitability of names in input images with images in the database. The method for classification is convolutional neural networks (CNN), while retrieval with cosine similarity. Dataset is divided into 5 masterclasses, each masterclass has 5 subclasses. The class used for retrieval is a masterclass, where the images of each large class are combined images of subclasses in the large class. From the experiments, we found that the CNN method has succeeded in supporting the retrieval task, by classifying image classes.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 50 条
  • [21] Convolutional neural networks for relevance feedback in content based image retrieval A Content based image retrieval system that exploits convolutional neural networks both for feature extraction and for relevance feedback
    Putzu, Lorenzo
    Piras, Luca
    Giacinto, Giorgio
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (37-38) : 26995 - 27021
  • [22] Content-based image retrieval with compact deep convolutional features
    Alzu'bi, Ahmad
    Amira, Abbes
    Ramzan, Naeem
    NEUROCOMPUTING, 2017, 249 : 95 - 105
  • [23] Relevance Feedback in Deep Convolutional Neural Networks for Content Based Image Retrieval
    Tzelepi, Maria
    Tefas, Anastasios
    9TH HELLENIC CONFERENCE ON ARTIFICIAL INTELLIGENCE (SETN 2016), 2016,
  • [24] Content-based Image Retrieval using Perceptual Image Hashing and Hopfield Neural Network
    Sabahi, F.
    Ahmad, M. Omair
    Swamy, M. N. S.
    2018 IEEE 61ST INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2018, : 352 - 355
  • [25] Content-based image retrieval using wavelets
    Flores-Pulido, L.
    Starostenko, O.
    Flores-Quechol, D.
    Rodrigues-Flores, J. I.
    Kirschning, Ingrid
    Chavez-Aragon, J. A.
    PROCEEDINGS OF THE 2ND WSEAS INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND APPLICATIONS: MODERN TOPICS OF COMPUTER SCIENCE, 2008, : 40 - +
  • [26] Content-Based Image Retrieval Using AutoEmbedder
    Kabir, Md Mohsin
    Ishraq, Adit
    Nur, Kamruddin
    Mridha, M. F.
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2022, 13 (03) : 240 - 248
  • [27] Content-based image retrieval using similarity
    Curry, RJ
    Marefat, MM
    Yang, F
    2005 INTERNATIONAL CONFERENCE ON INTEGRATION OF KNOWLEDGE INTENSIVE MULTI-AGENT SYSTEMS: KIMAS'05: MODELING, EXPLORATION, AND ENGINEERING, 2005, : 629 - 634
  • [28] Designing a new deep convolutional neural network for content-based image retrieval with relevance feedback
    Rastegar, Homayoun
    Giveki, Davar
    COMPUTERS & ELECTRICAL ENGINEERING, 2023, 106
  • [29] Convolutional neural network based dictionary learning to create hash codes for content-based image retrieval
    Ozturk, Saban
    PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE OF INFORMATION AND COMMUNICATION TECHNOLOGY, 2021, 183 : 624 - 629
  • [30] Content-based image retrieval
    Ciocca, Gianluigi
    Schettini, Raimondo
    Santini, Simone
    Bertini, Marco
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (24) : 37903 - 37903