Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators

被引:241
|
作者
Wang, C. Y. [1 ,2 ,3 ]
Herr, T. [1 ,2 ]
Del'Haye, P. [1 ,3 ]
Schliesser, A. [1 ,2 ]
Hofer, J. [1 ]
Holzwarth, R. [1 ,3 ]
Haensch, T. W. [1 ,4 ]
Picque, N. [1 ,4 ,5 ]
Kippenberg, T. J. [2 ]
机构
[1] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
[2] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland
[3] Menlo Syst GmbH, D-82152 Martinsried, Germany
[4] Univ Munich, Fak Phys, D-80799 Munich, Germany
[5] Univ Paris 11, CNRS, Inst Sci Mol Orsay, F-91405 Orsay, France
来源
NATURE COMMUNICATIONS | 2013年 / 4卷
基金
瑞士国家科学基金会;
关键词
FOURIER-TRANSFORM SPECTROSCOPY; GENERATION; RESONATORS; MODES;
D O I
10.1038/ncomms2335
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The mid-infrared spectral range (lambda similar to 2-20 mu m) is of particular importance as many molecules exhibit strong vibrational fingerprints in this region. Optical frequency combs-broadband optical sources consisting of equally spaced and mutually coherent sharp lines-are creating new opportunities for advanced spectroscopy. Here we demonstrate a novel approach to create mid-infrared optical frequency combs via four-wave mixing in a continuous-wave pumped ultra-high Q crystalline microresonator made of magnesium fluoride. Careful choice of the resonator material and design made it possible to generate a broadband, low-phase noise Kerr comb at lambda = 2.5 mu m spanning 200 nm (approximate to 10 THz) with a line spacing of 100 GHz. With its distinguishing features of compactness, efficient conversion, large mode spacing and high power per comb line, this novel frequency comb source holds promise for new approaches to molecular spectroscopy and is suitable to be extended further into the mid-infrared.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] DEVELOPMENT OF A MID-INFRARED OPTICAL FREQUENCY SYNTHESIZER
    Vainio, M.
    Siltanen, M.
    Merimaa, M.
    Halonen, L.
    2010 CONFERENCE ON PRECISION ELECTROMAGNETIC MEASUREMENTS CPEM, 2010, : 448 - +
  • [32] Mid-infrared quantum cascade laser frequency combs based on multi-section waveguides
    Wang, Ruijun
    Taschler, Philipp
    Kapsalidis, Filippos
    Shahmohammadi, Mehran
    Beck, Mattias
    Faist, Jerome
    OPTICS LETTERS, 2020, 45 (23) : 6462 - 6465
  • [33] Spectroscopic near-field microscopy using frequency combs in the mid-infrared
    Brehm, Markus
    Schliesser, Albert
    Keilmann, Fritz
    OPTICS EXPRESS, 2006, 14 (23): : 11222 - 11233
  • [34] Cascaded half-harmonic generation of femtosecond frequency combs in the mid-infrared
    Marandi, Alireza
    Ingold, Kirk A.
    Jankowski, Marc
    Byer, Robert L.
    OPTICA, 2016, 3 (03): : 324 - 327
  • [35] Crystalline mid-infrared lasers
    Sorokina, IT
    SOLID-STATE MID-INFRARED LASER SOURCES, 2003, 89 : 255 - 349
  • [36] Nonlinear solutions for χ(2) frequency combs in optical microresonators
    Podivilov, E.
    Smirnov, S.
    Breunig, I.
    Sturman, B.
    PHYSICAL REVIEW A, 2020, 101 (02)
  • [37] Optical frequency measurements relying on a mid-infrared frequency standard
    Rovera, GD
    Acef, O
    FREQUENCY MEASUREMENT AND CONTROL ADVANCED TECHNIQUES AND FUTURE TRENDS, 2000, 79 : 249 - 272
  • [38] Frequency combs and platicons in optical microresonators with normal GVD
    Lobanov, V. E.
    Lihachev, G.
    Kippenberg, T. J.
    Gorodetsky, M. L.
    OPTICS EXPRESS, 2015, 23 (06): : 7713 - 7721
  • [39] Mid-infrared frequency domain optical parametric amplifier
    Dalla-Barb, Gilles
    Jargot, Gaetan
    Lassonde, Philippe
    Toth, Szabolcs
    Haddad, Elissa
    Boschini, Fabio
    Delagnes, Jean-Christophe
    Leblanc, Adrien
    Ibrahim, Heide
    Cormier, Eric
    Legare, Francois
    OPTICS EXPRESS, 2023, 31 (09) : 14954 - 14964
  • [40] Broadband high-resolution molecular spectroscopy with interleaved mid-infrared frequency combs
    A. V. Muraviev
    D. Konnov
    K. L. Vodopyanov
    Scientific Reports, 10