Local bifurcations of three and four-dimensional systems: A tractable characterization with economic applications

被引:12
|
作者
Bosi, Stefano [1 ]
Desmarchelier, David [2 ]
机构
[1] Univ Paris Saclay, EPEE, Paris, France
[2] Univ Strasbourg, Univ Lorraine, AgroParisTech, CNRS,INRA,BETA, Strasbourg, France
关键词
RENEWABLE RESOURCES; SUSTAINABLE GROWTH; LIMIT-CYCLES; POLLUTION;
D O I
10.1016/j.mathsocsci.2018.11.001
中图分类号
F [经济];
学科分类号
02 ;
摘要
We provide necessary and sufficient conditions to detect local bifurcations of three and four-dimensional dynamical systems in continuous time. We characterize not only the bifurcations of codimension one but also those of codimension two. For the sake of completeness, we give also the non-degeneracy conditions for each bifurcation. The added value of our methodology rests on its generality. To illustrate the tractability of our approach, we provide two analytical applications of dimension three and four to environmental economics, complemented with numerical simulations. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:38 / 50
页数:13
相关论文
共 50 条
  • [31] Superintegrable cases of four-dimensional dynamical systems
    Esen, Ogul
    Choudhury, Anindya Ghose
    Guha, Partha
    Gumral, Hasan
    REGULAR & CHAOTIC DYNAMICS, 2016, 21 (02): : 175 - 188
  • [32] Cooperating Systems of Four-Dimensional Finite Automata
    Uchida, Yasuo
    Ito, Takao
    Sakamoto, Makoto
    Uchida, Kazuyuki
    Ide, Takashi
    Katamune, Ryoju
    Furutani, Hiroshi
    Kono, Michio
    Yoshinaga, Tsunehiro
    PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL SYMPOSIUM ON ARTIFICIAL LIFE AND ROBOTICS (AROB 16TH '11), 2011, : 191 - 194
  • [33] Cooperating systems of four-dimensional finite automata
    Yasuo Uchida
    Takao Ito
    Makoto Sakamoto
    Kazuyuki Uchida
    Takashi Ide
    Ryoju Katamune
    Hiroshi Furutani
    Michio Kono
    Tsunehiro Yoshinaga
    Artificial Life and Robotics, 2012, 16 (4) : 555 - 558
  • [34] Cooperating systems of four-dimensional finite automata
    Uchida, Yasuo
    Ito, Takao
    Sakamoto, Makoto
    Uchida, Kazuyuki
    Ide, Takashi
    Katamune, Ryoju
    Furutani, Hiroshi
    Kono, Michio
    Yoshinaga, Tsunehiro
    ARTIFICIAL LIFE AND ROBOTICS, 2012, 16 (04) : 555 - 558
  • [35] Local bifurcation analysis of a four-dimensional hyperchaotic system
    Wu Wen-Juan
    Chen Zeng-Qiang
    Yuan Zhu-Zhi
    CHINESE PHYSICS B, 2008, 17 (07) : 2420 - 2432
  • [36] Superintegrable cases of four-dimensional dynamical systems
    Oğul Esen
    Anindya Ghose Choudhury
    Partha Guha
    Hasan Gümral
    Regular and Chaotic Dynamics, 2016, 21 : 175 - 188
  • [37] Local bifurcation analysis of a four-dimensional hyperchaotic system
    吴文娟
    陈增强
    袁著祉
    ChinesePhysicsB, 2008, 17 (07) : 2420 - 2432
  • [38] On a classification of four-dimensional affine control systems
    Elkin, V. I.
    DOKLADY MATHEMATICS, 2014, 90 (01) : 483 - 484
  • [39] Loop Synchronization for Three Four-Dimensional Chaotic Systems Based on DNA Strand Displacement
    Sun, Junwei
    Ji, Haoping
    Wang, Yanfeng
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2023, 53 (10): : 6031 - 6042
  • [40] Perception of rigidity in three- and four-dimensional spaces
    He, Dongcheng
    Nguyen, Dat-Thanh
    Ogmen, Haluk
    Nishina, Shigeaki
    Yazdanbakhsh, Arash
    FRONTIERS IN PSYCHOLOGY, 2023, 14