On the Baker-Campbell-Hausdorff Theorem: non-convergence and prolongation issues
被引:6
|
作者:
Biagi, Stefano
论文数: 0引用数: 0
h-index: 0
机构:
Univ Politecn Marche, Dipartimento Ingn Ind & Sci Matemat, Ancona, ItalyUniv Politecn Marche, Dipartimento Ingn Ind & Sci Matemat, Ancona, Italy
Biagi, Stefano
[1
]
Bonfiglioli, Andrea
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bologna, Dipartimento Matemat, Piazza Porta San Donato,5, I-40126 Bologna, ItalyUniv Politecn Marche, Dipartimento Ingn Ind & Sci Matemat, Ancona, Italy
Bonfiglioli, Andrea
[2
]
Matone, Marco
论文数: 0引用数: 0
h-index: 0
机构:
Univ Padua, Dipartimento Fis & Astron G Galilei, Padua, Italy
Univ Padua, Ist Nazl Fis Nucl, Padua, ItalyUniv Politecn Marche, Dipartimento Ingn Ind & Sci Matemat, Ancona, Italy
Matone, Marco
[3
,4
]
机构:
[1] Univ Politecn Marche, Dipartimento Ingn Ind & Sci Matemat, Ancona, Italy
[2] Univ Bologna, Dipartimento Matemat, Piazza Porta San Donato,5, I-40126 Bologna, Italy
[3] Univ Padua, Dipartimento Fis & Astron G Galilei, Padua, Italy
[4] Univ Padua, Ist Nazl Fis Nucl, Padua, Italy
来源:
LINEAR & MULTILINEAR ALGEBRA
|
2020年
/
68卷
/
07期
关键词:
Baker-Campbell-Hausdorff Theorem;
matrix algebras;
convergence of the BCH series;
prolongation of the BCH series;
analytic prolongation;
logarithms;
HORMANDER OPERATORS;
LIE-GROUPS;
FORMULA;
MAGNUS;
DYNKIN;
D O I:
10.1080/03081087.2018.1540534
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We investigate some topics related to the celebrated Baker-Campbell-Hausdorff Theorem: a non-convergence result and prolongation problems. Given a Banach algebra A with identity I, and given X, Y is an element of A, we study the relationship of different issues: the convergence of the BCH series Sigma(n)Z(n)(X, Y), the existence of a logarithm of e(X)e(Y), and the convergence of the Mercator-type series Sigma(n) (-1)(n+1)(e(X)e(Y) - I)(n)/n which provides a selected logarithm of e(X)e(Y). We fix general results, among which we provide a non-convergence result for the BCH series, and (by suitable matrix counterexamples) we show that various pathologies can occur. These are related to some recent results, of interest in physics, on closed formulas for the BCH series: while the sum of the BCH series presents several non-convergence issues, these closed formulas can provide a prolongation for the BCH series when it is not convergent. On the other hand, we show by suitable counterexamples that an analytic prolongation of the BCH series can be singular even if the BCH series itself is convergent.
机构:
Chinese Univ Hong Kong, Inst Theoret Phys, Shatin, Hong Kong, Peoples R China
Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Inst Theoret Phys, Shatin, Hong Kong, Peoples R China
机构:
Univ Padua, Ist Nazl Fis Nucl, Dipartimento Fis & Astron G Galilei, I-35131 Padua, ItalyUniv Padua, Ist Nazl Fis Nucl, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy