Crystallization assisted self-assembly of semicrystalline block copolymers

被引:348
|
作者
He, Wei-Na [1 ]
Xu, Jun-Ting [1 ]
机构
[1] Zhejiang Univ, Dept Polymer Sci & Engn, MOE Key Lab Macromol Synth & Functionalizat, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Block copolymer; Self-assembly; Crystallization; CRYSTAL ORIENTATION CHANGES; OXIDE) DIBLOCK COPOLYMER; X-RAY-SCATTERING; DEPENDENT CONFORMATIONAL TRANSFORMATION; DIFFERENTIAL SCANNING CALORIMETRY; HETEROJUNCTION SOLAR-CELLS; FIELD-EFFECT MOBILITIES; THIN-FILM MORPHOLOGY; CONJUGATED ROD-COIL; TABLET-LIKE BLOCK;
D O I
10.1016/j.progpolymsci.2012.05.002
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The self-assembly of block copolymers (BCPs) in the presence of crystallization as the second driving force is reviewed, for BCPs in the bulk, thin films, single crystals and micelles. The crystallization of semicrystalline BCPs in the bulk is introduced briefly and the unique morphologies of semicrystalline BCPs at various levels due to crystallization are discussed. The thin film morphologies shown by crystalline BCPs are summarized in terms of the factors affecting the relative strengths of various driving forces. Special attention is paid to the thin film morphologies of functional BCPs containing crystalline poly(3-alkylthiophene) and perylene bisimide units. The single crystal morphologies of semicrystalline BCPs are also presented. Finally, the micellar morphologies of BCPs with a semicrystalline core are reviewed. The controlled and living growth of crystalline micelles, which is the unique characteristic of such micelle, is then discussed. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1350 / 1400
页数:51
相关论文
共 50 条
  • [21] Programmable Reconfiguration of Supramolecular Bottlebrush Block Copolymers: From Solution Self-Assembly to Co-Crystallization-Assistant Self-Assembly
    Zhang, Kaixing
    Wu, Yanggui
    Chen, Senbin
    Zhu, Jintao
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (44)
  • [22] Synthesis and self-assembly of bottlebrush block copolymers
    Bowden, NB
    Runge, MB
    Dutta, S
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 229 : U1103 - U1103
  • [23] Self-Assembly of Block Copolymers in Ionic Liquids
    Xie, Ru
    Lopez-Barron, Carlos R.
    Wagner, Norman J.
    IONIC LIQUIDS: CURRENT STATE AND FUTURE DIRECTIONS, 2017, 1250 : 83 - 142
  • [24] Self-assembly of responsive polypeptide block copolymers
    Savin, Daniel
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [25] Self-assembly of block copolymers in thin films
    Matsen, MW
    CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 1998, 3 (01) : 40 - 47
  • [26] Combining synthesis with self-assembly in block copolymers
    Wang, Muzhou
    Qiang, Zhe
    Akolawala, Sahil
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [27] Self-assembly of copolymers containing a polypeptide block
    Castelletto, V.
    Newby, G. E.
    Zhu, Z.
    Hamley, I. W.
    Noirez, L.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2011, 67 : C230 - C230
  • [28] Synthesis and Self-Assembly of Conjugated Block Copolymers
    Xiao, Lin-Lin
    Zhou, Xu
    Yue, Kan
    Guo, Zi-Hao
    POLYMERS, 2021, 13 (01) : 1 - 20
  • [29] Phase transition and self-assembly in block copolymers
    Hashimoto, T
    MACROMOLECULAR SYMPOSIA, 2001, 174 : 69 - 83
  • [30] Self-assembly of chiral block and gradient copolymers
    Bloksma, Meta M.
    Hoeppener, Stephanie
    D'Haese, Cecile
    Kempe, Kristian
    Mansfeld, Ulrich
    Paulus, Renzo M.
    Gohy, Jean-Francois
    Schubert, Ulrich S.
    Hoogenboom, Richard
    SOFT MATTER, 2012, 8 (01) : 165 - 172