Covariance-Based Barrage Jammer Nulling Filter for Surveillance Radar

被引:1
|
作者
Lu, Gang [1 ]
Jin, Hai-Yan [2 ]
机构
[1] Xihua Univ, Sch Elect & Informat Engn, Chengdu 610039, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Commun & Informat Engn, Chengdu 611731, Peoples R China
关键词
electronic counter-countermeasures; surveillance radar; barrage jammer; mainlobe jammer; multipath; ADAPTIVE RADAR; ECM SIGNALS; CANCELLATION; SUPPRESSION; MULTIPATH; CLUTTER;
D O I
10.1587/transcom.E97.B.512
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A covariance-based algorithm is proposed to find a barrage jammer suppression filter for surveillance radar with an adaptive array. The conventional adaptive beamformer (ABF) or adaptive sidelobe canceller (ASLC) with auxiliary antennas can be used successfully in sidelobe jammer rejection. When a jammer shares the same bearing with the target of interest, however, those methods inherently cancel the target in their attempt to null the jammer. By exploiting the jammer multipath scattered returns incident from other angles, the proposed algorithm uses only the auto-covariance matrix of the sample data produced by stacking range cell returns in a pulse repetition interval (PRI). It does not require estimation of direction of arrival (DOA) or time difference of arrival (TDOA) of multipath propagation, thus making it applicable to electronic countermeasure (ECM) environments with high power barrage jammers and it provides the victim radar with the ability to null both the sidelobe (sidebeam) and mainlobe (mainbeam) jammers simultaneously. Numeric simulations are provided to evaluate the performance of this filter in the presence of an intensive barrage jammer with jammer-to-signal ratio (JSR) greater than 30 dB, and the achieved signal-to-jammer-plus-noise ratio (SJNR) improvement factor (IF) exceeds 46 dB.
引用
收藏
页码:512 / 518
页数:7
相关论文
共 50 条
  • [21] Conditional covariance-based subtest selection for DIMTEST
    Froelich, Amy G.
    Habing, Brian
    APPLIED PSYCHOLOGICAL MEASUREMENT, 2008, 32 (02) : 138 - 155
  • [22] Covariance-Based DoA Estimation in a Krylov Subspace
    Tadeu N. Ferreira
    Marcello L. R. de Campos
    Sergio L. Netto
    Circuits, Systems, and Signal Processing, 2015, 34 : 2363 - 2379
  • [23] Graph reconstruction using covariance-based methods
    Sulaimanov, Nurgazy
    Koeppl, Heinz
    EURASIP JOURNAL ON BIOINFORMATICS AND SYSTEMS BIOLOGY, 2016, 2016 (01)
  • [24] A GENERALIZATION OF THE SPARSE ITERATIVE COVARIANCE-BASED ESTIMATOR
    Sward, Johan
    Adalbjornsson, Stefan Ingi
    Jakobsson, Andreas
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 3954 - 3958
  • [25] Conditional covariance-based nonparametric multidimensionality assessment
    Stout, W
    Habing, B
    Douglas, J
    Kim, HR
    Roussos, L
    Zhang, JM
    APPLIED PSYCHOLOGICAL MEASUREMENT, 1996, 20 (04) : 331 - 354
  • [26] COVARIANCE-BASED NETWORK TASKING OF OPTICAL SENSORS
    Hill, Keric
    Sydney, Paul
    Hamada, Kris
    Cortez, Randy
    Luu, Kim
    Jah, Moriba
    Schumacher, Paul W., Jr.
    Coulman, Michael
    Houchard, Jeff
    Naho'olewa, Dale
    SPACEFLIGHT MECHANICS 2010, PTS I-III, 2010, 136 : 769 - +
  • [27] A Covariance-based Method for Dynamic Background Subtraction
    Zhang, Shengping
    Yao, Hongxun
    Liu, Shaohui
    Chen, Xilin
    Gao, Wen
    19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 3141 - 3144
  • [28] Covariance-Based Variable Selection for Compositional Data
    Karel Hron
    Peter Filzmoser
    Sandra Donevska
    Eva Fišerová
    Mathematical Geosciences, 2013, 45 : 487 - 498
  • [29] Covariance-Based DoA Estimation in a Krylov Subspace
    Ferreira, Tadeu N.
    de Campos, Marcello L. R.
    Netto, Sergio L.
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2015, 34 (07) : 2363 - 2379
  • [30] Covariance-based online validation of video tracking
    SanMiguel, J. C.
    Calvo, A.
    ELECTRONICS LETTERS, 2015, 51 (03) : 226 - U48