Symmetric powers of complete modules over a two-dimensional regular local ring

被引:21
|
作者
Katz, D [1 ]
Kodiyalam, V [1 ]
机构
[1] UNIV KANSAS,DEPT MATH,LAWRENCE,KS 66045
关键词
D O I
10.1090/S0002-9947-97-01819-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (R,m) be a two-dimensional regular local ring with infinite residue field. For a finitely generated, torsion-free R-module A, write A(n) for the nth symmetric power of A, mod torsion. We study the modules A(n), n greater than or equal to 1, when A is complete (i.e., integrally closed). In particular, we show that B . A = A(2), for any minimal reduction B subset of or equal to A and that the ring +(n greater than or equal to 1)A(n) is Cohen-Macaulay.
引用
收藏
页码:747 / 762
页数:16
相关论文
共 50 条