An example of explicit implementation strategy and preconditioning for the high order edge finite elements applied to the time-harmonic Maxwell's equations
被引:5
|
作者:
论文数: 引用数:
h-index:
机构:
Bonazzoli, Marcella
[1
]
Dolean, Victorita
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cote Dazur, CNRS, LJAD, Nice, France
Univ Strathclyde, Glasgow, Lanark, ScotlandUniv Cote Dazur, CNRS, LJAD, Nice, France
Dolean, Victorita
[1
,2
]
Hecht, Frederic
论文数: 0引用数: 0
h-index: 0
机构:
UPMC Univ Paris 6, LJLL, Paris, FranceUniv Cote Dazur, CNRS, LJAD, Nice, France
High order finite elements;
Edge elements;
Schwarz preconditioners;
Time-harmonic Maxwell's equations;
FreeFem plus;
OPTIMIZED SCHWARZ METHODS;
D O I:
10.1016/j.camwa.2017.11.013
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper we focus on high order finite element approximations of the electric field combined with suitable preconditioners, to solve the time-harmonic Maxwell's equations in waveguide configurations. The implementation of high order curl-conforming finite elements is quite delicate, especially in the three-dimensional case. Here, we explicitly describe an implementation strategy, which has been embedded in the open source finite element software FreeFem++ (http://www.freefem.org/ff++/). In particular, we use the inverse of a generalized Vandermonde matrix to build basis functions in duality with the degrees of freedom, resulting in an easy-to-use but powerful interpolation operator. We carefully address the problem of applying the same Vandermonde matrix to possibly differently oriented tetrahedra of the mesh over the computational domain. We investigate the preconditioning for Maxwell's equations in the time-harmonic regime, which is an underdeveloped issue in the literature, particularly for high order discretizations. In the numerical experiments, we study the effect of varying several parameters on the spectrum of the matrix preconditioned with overlapping Schwarz methods, both for 2d and 3d waveguide configurations. (C) 2017 Elsevier Ltd. All rights reserved.
机构:
Peking Univ, LMAM, CAPT, Beijing 100871, Peoples R China
Peking Univ, Sch Math Sci, Beijing 100871, Peoples R ChinaPeking Univ, LMAM, CAPT, Beijing 100871, Peoples R China
Li, Ruo
Liu, Qicheng
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Sch Math Sci, Beijing 100871, Peoples R ChinaPeking Univ, LMAM, CAPT, Beijing 100871, Peoples R China
Liu, Qicheng
Yang, Fanyi
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Sch Math Sci, Beijing 100871, Peoples R ChinaPeking Univ, LMAM, CAPT, Beijing 100871, Peoples R China
机构:
Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R ChinaGuangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
Xie, Yingying
Tang, Ming
论文数: 0引用数: 0
h-index: 0
机构:
South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R ChinaGuangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
Tang, Ming
Tang, Chunming
论文数: 0引用数: 0
h-index: 0
机构:
Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R ChinaGuangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
机构:
Kungliga Tekn Hogeskolan, Div Numer Anal, Math, S-10044 Stockholm, SwedenKungliga Tekn Hogeskolan, Div Numer Anal, Math, S-10044 Stockholm, Sweden
Henning, Patrick
Ohlberger, Mario
论文数: 0引用数: 0
h-index: 0
机构:
Westfal Wilhelms Univ Munster, Inst Numer & Angew Math, D-48149 Munster, GermanyKungliga Tekn Hogeskolan, Div Numer Anal, Math, S-10044 Stockholm, Sweden
Ohlberger, Mario
Verfuerth, Barbara
论文数: 0引用数: 0
h-index: 0
机构:
Westfal Wilhelms Univ Munster, Inst Numer & Angew Math, D-48149 Munster, GermanyKungliga Tekn Hogeskolan, Div Numer Anal, Math, S-10044 Stockholm, Sweden