Compactons, solitons and periodic solutions for some forms of nonlinear Klein-Gordon equations

被引:112
|
作者
Wazwaz, AM [1 ]
机构
[1] St Xavier Univ, Dept Math & Comp Sci, Chicago, IL 60655 USA
关键词
D O I
10.1016/j.chaos.2005.08.145
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The nonlinear Klein-Gordon equations with power law nonlinearities are studied. The tanh method is used for analytic treatment for these equations. The analysis leads to travelling wave solutions with compactons, solitons, solitary patterns and periodic structures. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1005 / 1013
页数:9
相关论文
共 50 条
  • [31] Decay for nonlinear Klein-Gordon equations
    Georgiev, V
    Lucente, S
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2004, 11 (04): : 529 - 555
  • [32] Solutions of the perturbed Klein-Gordon equations
    Biswas, A.
    Ebadi, G.
    Fessak, M.
    Johnpillai, A. G.
    Johnson, S.
    Krishnan, E. V.
    Yildirim, A.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2012, 36 (A4): : 431 - 452
  • [33] On the spectral and modulational stability of periodic wavetrains for nonlinear Klein-Gordon equations
    Jones, Christopher K. R. T.
    Marangell, Robert
    Miller, Peter D.
    Plaza, Ramon G.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2016, 47 (02): : 417 - 429
  • [34] On the spectral and modulational stability of periodic wavetrains for nonlinear Klein-Gordon equations
    Christopher K. R. T. Jones
    Robert Marangell
    Peter D. Miller
    Ramón G. Plaza
    Bulletin of the Brazilian Mathematical Society, New Series, 2016, 47 : 417 - 429
  • [35] New Periodic Wave Solutions to Generalized Klein-Gordon and Benjamin Equations
    WU Guo-Jiang HAN Jia-Hua ZHANG Wen-Liang ZHANG Miao WANG Jun-Mao School of Physics and Material Science
    CommunicationsinTheoreticalPhysics, 2007, 48 (11) : 815 - 818
  • [36] New periodic wave solutions to generalized Klein-Gordon and Benjamin equations
    Wu Guo-Jiang
    Han Jia-Hua
    Zhang Wen-Liang
    Zhang Miao
    Wang Jun-Mao
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2007, 48 (05) : 815 - 818
  • [37] Periodic traveling wave solutions of discrete nonlinear Klein-Gordon lattices
    Hennig, Dirk
    Karachalios, Nikos I.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (17) : 18400 - 18419
  • [38] New compactons, solitons and periodic solutions for nonlinear variants of the KdV and the KP equations
    Wazwaz, AM
    CHAOS SOLITONS & FRACTALS, 2004, 22 (01) : 249 - 260
  • [39] NONLINEAR TRANSIENT DYNAMICS OF THE DRIVEN KLEIN-GORDON SOLITONS
    MAJERNIKOVA, E
    GAIDIDEI, YB
    BRAUN, OM
    PHYSICAL REVIEW E, 1995, 52 (01): : 1241 - 1244
  • [40] BILINEAR FORM AND SOLITON SOLUTIONS FOR THE COUPLED NONLINEAR KLEIN-GORDON EQUATIONS
    Li, He
    Meng, Xiang-Hua
    Tian, Bo
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2012, 26 (15):