Electrochemical Fabrication of Pd-Ag Alloy Nanowire Arrays in Anodic Alumina Oxide Template

被引:0
|
作者
Yue, Erhong [1 ]
Yu, Gang [1 ]
Ouyang, Yuejun [2 ]
Weng, Baicheng [1 ]
Si, Weiwei [1 ]
Ye, Liyuan [1 ]
机构
[1] Hunan Univ, State Key Lab ChemoBiosensing & Chemometr, Changsha 410082, Hunan, Peoples R China
[2] Huaihua Coll, Dept Chem & Chem Engn, Huaihua 418008, Peoples R China
基金
中国国家自然科学基金;
关键词
Pd-Ag; Alloy nanowires; Anodic aluminum oxide template; Electrodeposition;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The synthesis of Pd-Ag alloy nanowires in nanopores of porous anodic aluminum oxide (AAO) template by electrochemical deposition technique was reported. Pd-Ag alloy nanowires with 16%-25% Ag content are expected to serve as candidates of useful nanomaterials for the hydrogen sensors. Scanning electron microscopy (SEM) and energy dispersed X-ray spectroscopy (EDX) were employed to characterize the morphologies and compositions of the Pd-Ag nanowires. X-ray diffraction (XRD) was used to characterize the phase properties of the Pd-Ag nanowires. Pd-Ag alloy nanowire arrays with 17.28%-23.76% Ag content have been successfully fabricated by applying potentials ranging from -0.8 to -1.0 V (vs SCE). The sizes of the alloy nanowires are in agreement with the diameter of AAO nanopores. The underpotential deposition of Ag+ on Pd and Au plays an important role in producing an exceptionally high Ag content in the alloy. Alloy compositions can still be controlled by adjusting the ion concentration ratio of Pd2+ and Ag+ and the electrodeposition processes. XRD shows that nanowires obtained are in the form of alloy of Pd and Ag.
引用
收藏
页码:850 / 856
页数:7
相关论文
共 50 条
  • [21] Thermal behavior of antimony nanowire arrays embedded in anodic aluminum oxide template
    Zhang, X.
    Ding, Y.
    Zhang, Y.
    Hao, Y. F.
    Meng, G.
    Zhang, L.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2007, 89 (02) : 493 - 497
  • [22] Thermal behavior of antimony nanowire arrays embedded in anodic aluminum oxide template
    X. Zhang
    Y. Ding
    Y. Zhang
    Y. Hao
    G. Meng
    L. Zhang
    Journal of Thermal Analysis and Calorimetry, 2007, 89 : 493 - 497
  • [23] Porous anodic alumina membranes formed by anodization of AA1050 alloy as templates for fabrication of metallic nanowire arrays
    Zaraska, Leszek
    Sulka, Grzegorz D.
    Jaskula, Marian
    SURFACE & COATINGS TECHNOLOGY, 2010, 205 (07): : 2432 - 2437
  • [24] Alumina nanowire arrays standing on a porous anodic alumina membrane
    Tian, YT
    Meng, GW
    Gao, T
    Sun, SH
    Xie, T
    Peng, XS
    Ye, CH
    Zhang, LD
    NANOTECHNOLOGY, 2004, 15 (01) : 189 - 191
  • [25] Fabrication and optical property of metal nanowire arrays embedded in anodic porous alumina membrane
    Takase, Kouichi
    Shimizu, Tomohiro
    Sugawa, Kosuke
    Aono, Takashige
    Shirai, Yuma
    Nishida, Tomohiko
    Shingubara, Shoso
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2016, 55 (06)
  • [26] Fabrication of highly ordered InSb nanowire arrays by electrodeposition in porous anodic alumina membranes
    Zhang, XR
    Hao, YF
    Meng, GW
    Zhang, LD
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (10) : C664 - C668
  • [27] Electrochemical fabrication of ordered Ag2S nanowire arrays
    Peng, XS
    Meng, GW
    Zhang, J
    Wang, XR
    Zhao, LX
    Wang, YW
    Zhang, LD
    MATERIALS RESEARCH BULLETIN, 2002, 37 (07) : 1369 - 1375
  • [28] Ordered Co48Pb52 nanowire arrays electrodeposited in the porous anodic alumina oxide template with enhanced coercivity
    Ji, GB
    Tang, SL
    Gu, BX
    Du, YW
    JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (26): : 8862 - 8865
  • [29] Fabrication of CoPd alloy nanowire arrays on an anodic aluminum oxide/Ti/Si substrate and their enhanced magnetic properties
    Xu, CL
    Li, H
    Xue, T
    Li, HL
    SCRIPTA MATERIALIA, 2006, 54 (09) : 1605 - 1609
  • [30] Magnetic properties of Co-Pt alloy nanowire arrays in anodic alumina templates
    Gao, TR
    Yin, LF
    Tian, CS
    Lu, M
    Sang, H
    Zhou, SM
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2006, 300 (02) : 471 - 478