Longitudinal Assessment of Amyloid Pathology in Transgenic ArcAβ Mice Using Multi-Parametric Magnetic Resonance Imaging

被引:28
|
作者
Klohs, Jan [1 ,2 ,3 ,4 ]
Politano, Igna Wojtyna [1 ,2 ]
Deistung, Andreas [5 ]
Grandjean, Joanes [1 ,2 ,3 ,4 ]
Drewek, Anna [6 ]
Dominietto, Marco [1 ,2 ]
Keist, Ruth [1 ,2 ]
Schweser, Ferdinand [5 ]
Reichenbach, Juergen R. [5 ]
Nitsch, Roger M. [3 ,4 ,7 ]
Knuesel, Irene [3 ,4 ,8 ]
Rudin, Markus [1 ,2 ,3 ,4 ,8 ]
机构
[1] ETH, Inst Biomed Engn, Zurich, Switzerland
[2] Univ Zurich, Zurich, Switzerland
[3] Univ Zurich, Neurosci Ctr Zurich, Zurich, Switzerland
[4] ETH, Zurich, Switzerland
[5] Univ Jena, Med Phys Grp, Inst Diagnost & Intervent Radiol 1, Jena Univ Hosp, Jena, Germany
[6] ETH, Seminar Stat, Zurich, Switzerland
[7] Univ Zurich, Div Psychiat Res, Zurich, Switzerland
[8] Univ Zurich, Inst Pharmacol & Toxicol, Zurich, Switzerland
来源
PLOS ONE | 2013年 / 8卷 / 06期
基金
瑞士国家科学基金会;
关键词
BLOOD-BRAIN-BARRIER; MOUSE MODEL; ALZHEIMERS-DISEASE; QUANTITATIVE MRI; DIFFUSION; AGE; MICROVASCULATURE; ANGIOPATHY; ATROPHY;
D O I
10.1371/journal.pone.0066097
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Magnetic resonance imaging (MRI) can be used to monitor pathological changes in Alzheimer's disease (AD). The objective of this longitudinal study was to assess the effects of progressive amyloid-related pathology on multiple MRI parameters in transgenic arcA beta mice, a mouse model of cerebral amyloidosis. Diffusion-weighted imaging (DWI), T-1-mapping and quantitative susceptibility mapping (QSM), a novel MRI based technique, were applied to monitor structural alterations and changes in tissue composition imposed by the pathology over time. Vascular function and integrity was studied by assessing blood-brain barrier integrity with dynamic contrast-enhanced MRI and cerebral microbleed (CMB) load with susceptibility weighted imaging and QSM. A linear mixed effects model was built for each MRI parameter to incorporate effects within and between groups (i.e. genotype) and to account for changes unrelated to the disease pathology. Linear mixed effects modelling revealed a strong association of all investigated MRI parameters with age. DWI and QSM in addition revealed differences between arcA beta and wt mice over time. CMBs became apparent in arcA beta mice with 9 month of age; and the CMB load reflected disease stage. This study demonstrates the benefits of linear mixed effects modelling of longitudinal imaging data. Moreover, the diagnostic utility of QSM and assessment of CMB load should be exploited further in studies of AD.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Seminal vesicle invasion on multi-parametric magnetic resonance imaging: Correlation with histopathology
    Grivas, Nikolaos
    Hinnen, Karel
    de Jong, Jeroen
    Heemsbergen, Wilma
    Moonen, Luc
    Witteveen, Thelma
    van der Poel, Henk
    Heijmink, Stijn
    EUROPEAN JOURNAL OF RADIOLOGY, 2018, 98 : 107 - 112
  • [22] Multi-parametric magnetic resonance imaging evaluation of cerebral amyloid angiopathy related inflammation: Case series and review of literature
    Nada, Ayman
    Leiva-Salinas, Carlos
    Mahdi, Eman
    Mahmoud, Esmat
    Ahsan, Humera
    Cousins, Joseph Paul
    CLINICAL IMAGING, 2021, 78 : 38 - 44
  • [23] Quantitative Multi-Parametric Magnetic Resonance Imaging of Tumor Response to Photodynamic Therapy
    Schreurs, Tom J. L.
    Hectors, Stefanie J.
    Jacobs, Igor
    Grull, Holger
    Nicolay, Klaas
    Strijkers, Gustav J.
    PLOS ONE, 2016, 11 (11):
  • [24] Hirni: Segmentation of Brain Tumors in Multi-parametric Magnetic Resonance Imaging Scans
    Mejia, Gabriel
    Moreno, Danniel
    Ruiz, Daniela
    Aparicio, Nicolas
    2021 IEEE 2ND INTERNATIONAL CONGRESS OF BIOMEDICAL ENGINEERING AND BIOENGINEERING (CI-IB&BI 2021), 2021,
  • [25] WHAT IS THE IMPACT OF NUMBER OF LESIONS IDENTIFIED ON MULTI-PARAMETRIC MAGNETIC RESONANCE IMAGING?
    Griffiths, Luke
    Kotamarti, Srinath
    Vasudevan, Vinaya
    Gurram, Sandeep
    Lamba, Sheena
    Zaman, Sura
    Sheehan, Patrick
    Hall, Simon
    Vira, Manish
    JOURNAL OF UROLOGY, 2018, 199 (04): : E526 - E526
  • [26] Multi-Parametric Representation of Voxel-Based Quantitative Magnetic Resonance Imaging
    Engstrom, Maria
    Warntjes, Jan B. M.
    Tisell, Anders
    Landtblom, Anne-Marie
    Lundberg, Peter
    PLOS ONE, 2014, 9 (11):
  • [27] The Preoperative Diagnostic Performance of Multi-Parametric Quantitative Assessment in Rectal Carcinoma: A Preliminary Study Using Synthetic Magnetic Resonance Imaging
    Zhu, Kexin
    Chen, Zhicheng
    Cui, Lingling
    Zhao, Jinli
    Liu, Yi
    Cao, Jibin
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [28] Visualizing whole-body treatment response heterogeneity using multi-parametric magnetic resonance imaging
    Blackledge, Matthew D.
    Rata, Mihaela
    Tunariu, Nina
    Koh, Dow-Mu
    George, Angela
    Zivi, Andrea
    Lorente, David
    Attard, Gerhardt
    de Bono, Johann S.
    Leach, Martin O.
    Collins, David J.
    JOURNAL OF ALGORITHMS & COMPUTATIONAL TECHNOLOGY, 2016, 10 (04) : 290 - 301
  • [29] Predicting response to electroconvulsive therapy combined with antipsychotics in schizophrenia using multi-parametric magnetic resonance imaging
    Gong, Jie
    Cui, Long-Biao
    Xi, Yi-Bin
    Zhao, Ying-Song
    Yang, Xue-Juan
    Xu, Zi-liang
    Sun, Jin-Bo
    Liu, Peng
    Jia, Jie
    Li, Ping
    Yin, Hong
    Qin, Wei
    SCHIZOPHRENIA RESEARCH, 2020, 216 : 262 - 271
  • [30] Multi-parametric magnetic resonance imaging assessment of whole tumour heterogeneity for chemoradiotherapy response prediction in rectal cancer
    Pham, Trang Thanh
    Liney, Gary
    Wong, Karen
    Henderson, Christopher
    Rai, Robba
    Graham, Petra L.
    Borok, Nira
    Truong, Minh Xuan
    Lee, Mark
    Shin, Joo-Shik
    Hudson, Malcolm
    Barton, Michael B.
    PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2021, 18 : 26 - 33