Regularity for harmonic maps into certain pseudo-Riemannian manifolds

被引:17
|
作者
Zhu, Miaomiao [1 ]
机构
[1] Univ Warwick, Inst Math, Coventry CV4 7AL, W Midlands, England
来源
关键词
Harmonic map; Regularity; Lorentzian manifold; Pseudo-Riemannian manifold; WEAK SOLUTIONS; CONSERVATION-LAWS; SURFACE; EVOLUTION; THEOREM; SPACES;
D O I
10.1016/j.matpur.2012.06.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we investigate the regularity for certain elliptic systems without an L-2-antisymmetric structure. As applications, we prove some regularity results for weakly harmonic maps from the unit ball B = B(m) subset of R-m (m >= 2) into certain pseudo-Riemannian manifolds. (C) 2012 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:106 / 123
页数:18
相关论文
共 50 条
  • [31] Pseudo-Riemannian metrics, Kahler-Einstein metrics on Grauert tubes and harmonic Riemannian manifolds
    Aguilar, RM
    QUARTERLY JOURNAL OF MATHEMATICS, 2000, 51 : 1 - 17
  • [32] Pseudo-Riemannian Jacobi-Videv manifolds
    Gilkey, P.
    Nikcevic, S.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2007, 4 (05) : 727 - 738
  • [33] INVARIANT COEFFICIENT OPERATORS ON PSEUDO-RIEMANNIAN MANIFOLDS
    BABBITT, D
    JOURNAL OF MATHEMATICS AND MECHANICS, 1966, 15 (04): : 643 - &
  • [34] PSEUDO-RIEMANNIAN MANIFOLDS WITH TOTALLY GEODESIC BISECTORS
    BEEM, JK
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A205 - A205
  • [35] Pseudo-Riemannian Manifolds with Commuting Jacobi Operators
    Brozos-Vázquez M.
    Gilkey P.
    Rendiconti del Circolo Matematico di Palermo, 2006, 55 (2) : 163 - 174
  • [36] Indefinite Kasparov Modules and Pseudo-Riemannian Manifolds
    Koen van den Dungen
    Adam Rennie
    Annales Henri Poincaré, 2016, 17 : 3255 - 3286
  • [37] Note on the holonomy groups of pseudo-Riemannian manifolds
    A. S. Galaev
    Mathematical Notes, 2013, 93 : 810 - 815
  • [38] Cones over pseudo-Riemannian manifolds and their holonomy
    Alekseevsky, D. V.
    Cortes, V.
    Galaev, A. S.
    Leistner, T.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 635 : 23 - 69
  • [39] FLAT PSEUDO-RIEMANNIAN STRUCTURES OF COMPACT MANIFOLDS
    FURNESS, P
    FEDIDA, E
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 286 (03): : 169 - 171
  • [40] Pseudo-Riemannian manifolds with recurrent spinor fields
    Galaev, A. S.
    SIBERIAN MATHEMATICAL JOURNAL, 2013, 54 (04) : 604 - 613