Simple, economic, and scalable production of 2D molybdenite (MoS2) nanosheets is necessary for practical applications, as in next generation anodes for Li-ion batteries. One currently developing route for production of MoS2 nanosheets is exfoliation of bulk molybdenite using a ball milling technique. In this research, the morphological evolution of molybdenite in the milling process of MoS2 and MoS2-Al2O3 systems is studied. Structural changes in molybdenite were investigated using transmission electron microscopy and X-ray diffraction. Results showed that when MoS2 was milled alone, 2D nanosheets, nanobars, and nanotubes were formed in the first step of the process and then structural destruction occurred when milling was prolonged. However, when alumina was included, destruction initiated from the beginning of the milling process leading to a highly activated structure.