Limiting interpolation spaces via extrapolation

被引:10
|
作者
Astashkin, Sergey, V [1 ]
Lykov, Konstantin, V [2 ]
Milman, Mario [3 ]
机构
[1] Samara Natl Res Univ, Moskovskoye Shosse 34, Samara 443086, Russia
[2] Russian Acad Sci, Fed Sci Res Ctr Crystallog & Photon, Image Proc Syst Inst Branch, Molodogvardejskaya St 151, Samara 443001, Russia
[3] Inst Argentino Matemat, Buenos Aires, DF, Argentina
关键词
Interpolation space; Extrapolation space; Lions-Peetre spaces; Lebesgue spaces; Schatten ideals; GRAND; THEOREM;
D O I
10.1016/j.jat.2018.09.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a complete characterization of limiting interpolation spaces for the real method of interpolation using extrapolation theory. For this purpose the usual tools (e.g., Boyd indices or the boundedness of Hardy type operators) are not appropriate. Instead, our characterization hinges upon the boundedness of some simple operators (e.g. f bar right arrow f(t(2))/t, or f bar right arrow f(t(1/2))) acting on the underlying lattices that are used to control the K- and J-functionals. Reiteration formulae, extending Holmstedt's classical reiteration theorem to limiting spaces, are also proved and characterized in this fashion. The resulting theory gives a unified roof to a large body of literature that, using ad-hoc methods, had covered only special cases of the results obtained here. Applications to Matsaev ideals, Grand Lebesgue spaces, Bourgain-BrezisMironescu-Maz' ya-Shaposhnikova limits, as well as a new vector valued extrapolation theorems, are provided. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:16 / 70
页数:55
相关论文
共 50 条
  • [42] Interpolation and extrapolation with the CALPHAD method
    Luo, Qun
    Zhai, Cong
    Sun, Dongke
    Chen, Wei
    Li, Qian
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2019, 35 (09) : 2115 - 2120
  • [43] Abstracting Induction by Extrapolation and Interpolation
    Cousot, Patrick
    VERIFICATION, MODEL CHECKING, AND ABSTRACT INTERPRETATION (VMCAI 2015), 2015, 8931 : 19 - 42
  • [44] RECURSIVE INTERPOLATION, EXTRAPOLATION AND PROJECTION
    BREZINSKI, C
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1983, 9 (04) : 369 - 376
  • [45] Friedrich Froebel: interpolation, extrapolation
    Watts, Mike
    EARLY CHILD DEVELOPMENT AND CARE, 2021, 191 (7-8) : 1186 - 1195
  • [46] Probabilistic 2D point interpolation and extrapolation via data modeling
    Jakóbczak, Dariusz Jacek
    Informatica (Slovenia), 2015, 39 (01): : 53 - 61
  • [47] Interpolation on Symmetric Spaces Via the Generalized Polar Decomposition
    Evan S. Gawlik
    Melvin Leok
    Foundations of Computational Mathematics, 2018, 18 : 757 - 788
  • [48] Interpolation on Symmetric Spaces Via the Generalized Polar Decomposition
    Gawlik, Evan S.
    Leok, Melvin
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2018, 18 (03) : 757 - 788
  • [49] Disjointly homogeneous rearrangement invariant spaces via interpolation
    Astashkin, S. V.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 421 (01) : 338 - 361
  • [50] Probabilistic 2D Point Interpolation and Extrapolation via Data Modeling
    Jakobczak, Dariusz Jacek
    INFORMATICA-JOURNAL OF COMPUTING AND INFORMATICS, 2015, 39 (01): : 53 - 61