Feature Selection Based on Sparse Imputation

被引:0
|
作者
Xu, Jin [1 ]
Yin, Yafeng [1 ]
Man, Hong [1 ]
He, Haibo [2 ]
机构
[1] Stevens Inst Technol, Dept Elect & Comp Engn, Hoboken, NJ 07030 USA
[2] Univ Rhode Isl, Dept Elect Comp & Biomed Engn, Kingston, RI 02881 USA
来源
2012 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2012年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Feature selection, which aims to obtain valuable feature subsets, has been an active topic for years. How to design an evaluating metric is the key for feature selection. In this paper, we address this problem using imputation quality to search for the meaningful features and propose feature selection via sparse imputation (FSSI) method. The key idea is utilizing sparse representation criterion to test individual feature. The feature based classification is used to evaluate the proposed method. Comparative studies are conducted with classic feature selection methods (such as Fisher score and Laplacian score). Experimental results on benchmark data sets demonstrate the effectiveness of FSSI method.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Missing data imputation with fuzzy feature selection for diabetes dataset
    Dzulkalnine, Mohamad Faiz
    Sallehuddin, Roselina
    SN APPLIED SCIENCES, 2019, 1 (04):
  • [32] Fuzzy rough assisted missing value imputation and feature selection
    Pankhuri Jain
    Anoop Tiwari
    Tanmoy Som
    Neural Computing and Applications, 2023, 35 : 2773 - 2793
  • [33] The Feature Selection Effect on Missing Value Imputation of Medical Datasets
    Liu, Chia-Hui
    Tsai, Chih-Fong
    Sue, Kuen-Liang
    Huang, Min-Wei
    APPLIED SCIENCES-BASEL, 2020, 10 (07):
  • [34] Feature selection via kernel sparse representation
    Lv, Zhizheng
    Li, Yangding
    Li, Jieye
    2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 2637 - 2644
  • [35] Sparse optimization in feature selection: application in neuroimaging
    Kampa, K.
    Mehta, S.
    Chou, C. A.
    Chaovalitwongse, W. A.
    Grabowski, T. J.
    JOURNAL OF GLOBAL OPTIMIZATION, 2014, 59 (2-3) : 439 - 457
  • [36] Sparse optimization in feature selection: application in neuroimaging
    K. Kampa
    S. Mehta
    C. A. Chou
    W. A. Chaovalitwongse
    T. J. Grabowski
    Journal of Global Optimization, 2014, 59 : 439 - 457
  • [37] Sparse structural feature selection for multitarget regression
    Yuan, Haoliang
    Zheng, Junjie
    Lai, Loi Lei
    Tang, Yuan Yan
    KNOWLEDGE-BASED SYSTEMS, 2018, 160 : 200 - 209
  • [38] Sparse and Flexible Projections for Unsupervised Feature Selection
    Wang, Rong
    Zhang, Canyu
    Bian, Jintang
    Wang, Zheng
    Nie, Feiping
    Li, Xuelong
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (06) : 6362 - 6375
  • [39] BAYESIAN FEATURE SELECTION FOR SPARSE TOPIC MODEL
    Chang, Ying-Lan
    Lee, Kuen-Feng
    Chien, Jen-Tzung
    2011 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2011,
  • [40] UDSFS: Unsupervised deep sparse feature selection
    Cong, Yang
    Wang, Shuai
    Fan, Baojie
    Yang, Yunsheng
    Yu, Haibin
    NEUROCOMPUTING, 2016, 196 : 150 - 158