Engineering ferroelectric instability to achieve ultralow thermal conductivity and high thermoelectric performance in Sn1-xGexTe

被引:176
|
作者
Banik, Ananya [1 ]
Ghosh, Tanmoy [1 ]
Arora, Raagya [2 ]
Dutta, Moinak [1 ]
Pandey, Juhi [3 ]
Acharya, Somnath [3 ]
Soni, Ajay [3 ]
Waghmare, Umesh V. [2 ,4 ]
Biswas, Kanishka [1 ,4 ]
机构
[1] JNCASR, New Chem Unit, Jakkur PO, Bangalore 560064, Karnataka, India
[2] JNCASR, Theoret Sci Unit, Jakkur PO, Bangalore 560064, Karnataka, India
[3] Indian Inst Technol Mandi, Sch Basic Sci, Mandi 175005, Himachal Prades, India
[4] JNCASR, Sch Adv Mat, Jakkur PO, Bangalore 560064, Karnataka, India
关键词
SOFT TO-PHONON; RAMAN-SCATTERING; PHASE-TRANSITION; SNTE; FIGURE; MERIT; STABILITY; ORIGIN; INDIUM; LEAD;
D O I
10.1039/c8ee03162b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
High thermoelectric performance of a crystalline solid requires it to have low thermal conductivity which is one of the utmost material challenges. Herein, we demonstrate how the local structural distortions and the associated ferroelectric lattice instability induced soft polar phonons effectively scatter the heat carrying acoustic phonons and help achieve ultralow lattice thermal conductivity in SnTe by engineering the instability near room temperature via Ge (x = 0-30 mol%) alloying. While Sn1-xGexTe possesses a global cubic structure above room temperature (x < 0.5), by analysing synchrotron X-ray pair distribution functions (PDFs) we showed that local rhombohedral distortion exists which is sustained up to the studied maximum temperature (approximate to 600 K) above the ferroelectric transition (T-C = 290 K). We showed that the local rhombohedral distortions in global cubic Sn1-xGexTe are predominantly associated with local Ge off-centering which forms a short-range chain-like structure and scatters acoustic phonons, resulting in an ultralow lattice thermal conductivity of approximate to 0.67 W m(-1) K-1. In addition, Sb doping in Sn1-xGexTe enhances the Seebeck coefficient due to p-type carrier optimization and valence band convergence, which leads to a synergistic boost in the thermoelectric figure of merit, zT, to approximate to 1.6 at 721 K. The concept of engineering ferroelectric instability to achieve ultralow thermal conductivity is applicable to other crystalline solids, which opens up a general opportunity to enhance the thermoelectric performance.
引用
收藏
页码:589 / 595
页数:7
相关论文
共 50 条
  • [21] Silver vacancy concentration engineering leading to the ultralow lattice thermal conductivity and improved thermoelectric performance of Ag1-xInTe2
    Yaqiong Zhong
    Yong Luo
    Xie Li
    Jiaolin Cui
    Scientific Reports, 9
  • [22] Ultralow lattice thermal conductivity induced high thermoelectric performance in the δ-Cu2S monolayer
    Yu, Jiabing
    Li, Tingwei
    Nie, Ge
    Zhang, Bo-Ping
    Sun, Qiang
    NANOSCALE, 2019, 11 (21) : 10306 - 10313
  • [23] Ultralow Lattice Thermal Conductivity and Enhanced Thermoelectric Performance in SnTe:Ga Materials
    Orabi, Rabih Al Rahal Al
    Hwang, Junphil
    Lin, Chan-Chieh
    Gautier, Regis
    Fontaine, Bruno
    Kim, Woochul
    Rhyee, Jong-Soo
    Wee, Daehyun
    Fornari, Marco
    CHEMISTRY OF MATERIALS, 2017, 29 (02) : 612 - 620
  • [24] Design of Domain Structure and Realization of Ultralow Thermal Conductivity for Record-High Thermoelectric Performance in Chalcopyrite
    Zhang, Jian
    Huang, Lulu
    Zhu, Chen
    Zhou, Chongjian
    Jabar, Bushra
    Li, Jimin
    Zhu, Xiaoguang
    Wang, Ling
    Song, Chunjun
    Xin, Hongxing
    Li, Di
    Qin, Xiaoying
    ADVANCED MATERIALS, 2019, 31 (52)
  • [25] Zintl chemistry leading to ultralow thermal conductivity, semiconducting behavior, and high thermoelectric performance of hexagonal KBaBi
    Feng, Zhenzhen
    Fu, Yuhao
    Yan, Yuli
    Zhang, Yongsheng
    Singh, David J.
    PHYSICAL REVIEW B, 2021, 103 (22)
  • [26] Achieving ultralow lattice thermal conductivity and improved thermoelectric performance in BiSe by doping
    Liang, Xin
    Wang, Hemeng
    Ren, Jinlong
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2022, 42 (09) : 3905 - 3912
  • [27] Rattling atoms induced ultralow thermal conductivity and high thermoelectric performance in monolayer Ca3Sn2S7 chalcogenide perovskite
    Li, Wenfeng
    Wang, Huihui
    Liu, Zhiyong
    Yang, Gui
    EUROPEAN PHYSICAL JOURNAL PLUS, 2025, 140 (01):
  • [28] Ultralow Thermal Conductivity in Diamondoid Structures and High Thermoelectric Performance in (Cu1-xAgx)(In1-yGay)Te2
    Xie, Hongyao
    Hao, Shiqiang
    Bailey, Trevor P.
    Cai, Songting
    Zhang, Yinying
    Slade, Tyler J.
    Snyder, G. Jeffrey
    Dravid, Vinayak P.
    Uher, Ctirad
    Wolverton, Christopher
    Kanatzidis, Mercouri G.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (15) : 5978 - 5989
  • [29] Enhanced Power Factor and Ultralow Lattice Thermal Conductivity Induced High Thermoelectric Performance of BiCuTeO/BiCuSeO Superlattice
    Yang, Xuewen
    Sun, Zhiqian
    Ge, Guixian
    Yang, Jueming
    MATERIALS, 2023, 16 (12)
  • [30] Ultralow thermal conductivity and high thermoelectric performance of Cu2Se/TiO2 nanocomposite
    Kong, Fangfang
    Bai, Jiang
    Zhao, Yiwei
    Liu, Yong
    Shi, Jing
    Wang, Ziyu
    Xiong, Rui
    APPLIED PHYSICS LETTERS, 2019, 115 (20)