High-order local discontinuous Galerkin method for a fractal mobile/immobile transport equation with the Caputo-Fabrizio fractional derivative

被引:19
|
作者
Zhang, Min [1 ,2 ]
Liu, Yang [2 ]
Li, Hong [2 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen, Peoples R China
[2] Inner Mongolia Univ, Sch Math Sci, 235 West Daxue Rd, Hohhot 010021, Peoples R China
基金
中国国家自然科学基金;
关键词
a priori error analysis; Caputo-Fabrizio fractional derivative; fractal mobile; immobile transport equation; LDG method; stability; FINITE-ELEMENT-METHOD; SPECTRAL COLLOCATION METHOD; DIFFERENCE SCHEME; NUMERICAL-METHOD; DIFFUSION PROBLEM; VOLUME METHOD; APPROXIMATION; CONVERGENCE;
D O I
10.1002/num.22366
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, a local discontinuous Galerkin (LDG) method is studied for numerically solving the fractal mobile/immobile transport equation with a new time Caputo-Fabrizio fractional derivative. The stability of the LDG scheme is proven, and a priori error estimates with the second-order temporal convergence rate and the (k + 1)th order spatial convergence rate are derived in detail. Finally, numerical experiments based on P-k, k = 0, 1, 2, 3, elements are provided to verify our theoretical results.
引用
收藏
页码:1588 / 1612
页数:25
相关论文
共 50 条