Bipartite graphs with close domination and k-domination numbers

被引:4
|
作者
Ekinci, Gulnaz Boruzanli [1 ]
Bujtas, Csilla [2 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[2] Ege Univ, Dept Math, TR-35100 Izmir, Turkey
来源
OPEN MATHEMATICS | 2020年 / 18卷
关键词
domination number; k-domination number; hereditary property; vertex-edge cover; TC-number; computational complexity; TRANSVERSAL NUMBERS; EQUAL DOMINATION; 2-DOMINATION; BOUNDS;
D O I
10.1515/math-2020-0047
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k be a positive integer and let G be a graph with vertex set V(G). A subset D subset of V(G) is a k-dominating set if every vertex outside D is adjacent to at least k vertices in D. The k-domination number gamma(k)(G) is the minimum cardinality of a k-dominating set in G. For any graph G, we know that gamma(k)(G) >= gamma(G) + k - 2 where Delta(G) >= k >= 2 and this bound is sharp for every k >= 2. In this paper, we characterize bipartite graphs satisfying the equality for k >= 3 and present a necessary and sufficient condition for a bipartite graph to satisfy the equality hereditarily when k = 3. We also prove that the problem of deciding whether a graph satisfies the given equality is NP-hard in general.
引用
收藏
页码:873 / 885
页数:13
相关论文
共 50 条
  • [31] k-Domination and k-Independence in Graphs: A Survey
    Chellali, Mustapha
    Favaron, Odile
    Hansberg, Adriana
    Volkmann, Lutz
    GRAPHS AND COMBINATORICS, 2012, 28 (01) : 1 - 55
  • [32] Weak signed Roman k-domination in graphs
    Volkmann, Lutz
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2021, 6 (01) : 1 - 15
  • [33] Total k-domination in Cartesian product graphs
    Bermudo, S.
    Sanchez, J. L.
    Sigarreta, J. M.
    PERIODICA MATHEMATICA HUNGARICA, 2017, 75 (02) : 255 - 267
  • [34] On the global total k-domination number of graphs
    Bermudo, Sergio
    Cabrera Martinez, Abel
    Hernandez Mira, Frank A.
    Sigarreta, Jose M.
    DISCRETE APPLIED MATHEMATICS, 2019, 263 : 42 - 50
  • [35] Upper signed k-domination number in graphs
    Zhou, Ligang
    Shan, Erfang
    Zhao, Yancai
    ARS COMBINATORIA, 2015, 122 : 307 - 318
  • [36] Total k-domination in Cartesian product graphs
    S. Bermudo
    J. L. Sanchéz
    J. M. Sigarreta
    Periodica Mathematica Hungarica, 2017, 75 : 255 - 267
  • [37] Total k-domination in strong product graphs
    Bermudo, S.
    Hernandez-Gomez, J. C.
    Sigarreta, J. M.
    DISCRETE APPLIED MATHEMATICS, 2019, 263 : 51 - 58
  • [38] Signed total Italian k-domination in graphs
    Volkmann, Lutz
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2021, 6 (02) : 171 - 183
  • [39] k-Domination and k-Independence in Graphs: A Survey
    Mustapha Chellali
    Odile Favaron
    Adriana Hansberg
    Lutz Volkmann
    Graphs and Combinatorics, 2012, 28 : 1 - 55
  • [40] Restrained K-Domination
    Bouchou, Ahmed
    Chellali, Mustapha
    Volkmann, Lutz
    SSRN,