Pseudomonadic BL-algebras: an algebraic approach to possibilistic BL-logic

被引:4
|
作者
Busaniche, Manuela [1 ]
Cordero, Penelope [2 ]
Oscar Rodriguez, Ricardo [3 ]
机构
[1] UNL, CONICET, FIQ, IMAL, Santa Fe, NM, Argentina
[2] UNL, CONICET, IMAL, Santa Fe, NM, Argentina
[3] UBA, CONICET, FCEyN, ICC,UAB DC, Buenos Aires, DF, Argentina
基金
欧盟地平线“2020”;
关键词
Modal algebras; Fuzzy possibilistic logic; BL-algebras;
D O I
10.1007/s00500-019-03810-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fuzzy possibilistic logic is an important formalism for approximate reasoning. It extends the well-known basic propositional logic BL, introduced by Hajek, by offering the ability to reason about possibility and necessity of fuzzy propositions. We consider an algebraic approach to study this logic, introducing Pseudomonadic BL-algebras. These algebras turn to be a generalization of both Pseudomonadic algebras introduced by Bezhanishvili (Math Log Q 48:624-636, 2002) and serial, Euclidean and transitive Bimodal Godel algebras proposed by Caicedo and Rodriguez (J Log Comput 25:37-55, 2015). We present the connection between this class of algebras and possibilistic BL-frames, as a first step to solve an open problem proposed by Hajek (Metamathematics of fuzzy logic. Trends in logic, Kluwer, Dordrecht, 1998, Chap. 8, Sect. 3).
引用
收藏
页码:2199 / 2212
页数:14
相关论文
共 50 条
  • [31] Fuzzy stabilizers in BL-algebras
    Cheng, Xiaoyun
    Xin, Xiaolong
    Wang, Juntao
    He, Pengfei
    FILOMAT, 2018, 32 (05) : 1783 - 1788
  • [32] A new class of BL-algebras
    Somayeh Motamed
    Lida Torkzadeh
    Soft Computing, 2017, 21 : 687 - 698
  • [33] Baer extensions of BL-algebras
    Leustean, Laurentiu
    JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING, 2006, 12 (3-4) : 321 - 336
  • [34] Sheaf representations of BL-algebras
    L. Leuştean
    Soft Computing, 2005, 9 : 897 - 909
  • [35] Canonicity in subvarieties of BL-algebras
    Manuela Busaniche
    Leonardo Manuel Cabrer
    Algebra universalis, 2009, 62 : 375 - 397
  • [36] Varieties of BL-Algebras II
    Agliano, P.
    Montagna, F.
    STUDIA LOGICA, 2018, 106 (04) : 721 - 737
  • [37] ON DECOMPOSITION OF PSEUDO BL-ALGEBRAS
    Dvurecenskij, Anatolij
    Kowalski, Tomasz
    MATHEMATICA SLOVACA, 2011, 61 (03) : 307 - 326
  • [38] Noetherian and Artinian BL-algebras
    Motamed, Somayeh
    Moghaderi, Javad
    SOFT COMPUTING, 2012, 16 (11) : 1989 - 1994
  • [39] Using BL-algebras for codes
    Zahiri, Saeide
    Saeid, Arsham Borumand
    Zahiri, Masoome
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (08) : 4023 - 4040
  • [40] Completions in subvarieties of BL-algebras
    Busaniche, Manuela
    Manuel Cabrer, Leonardo
    40TH IEEE INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC ISMVL 2010, 2010, : 89 - 92