Pseudomonadic BL-algebras: an algebraic approach to possibilistic BL-logic

被引:4
|
作者
Busaniche, Manuela [1 ]
Cordero, Penelope [2 ]
Oscar Rodriguez, Ricardo [3 ]
机构
[1] UNL, CONICET, FIQ, IMAL, Santa Fe, NM, Argentina
[2] UNL, CONICET, IMAL, Santa Fe, NM, Argentina
[3] UBA, CONICET, FCEyN, ICC,UAB DC, Buenos Aires, DF, Argentina
基金
欧盟地平线“2020”;
关键词
Modal algebras; Fuzzy possibilistic logic; BL-algebras;
D O I
10.1007/s00500-019-03810-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fuzzy possibilistic logic is an important formalism for approximate reasoning. It extends the well-known basic propositional logic BL, introduced by Hajek, by offering the ability to reason about possibility and necessity of fuzzy propositions. We consider an algebraic approach to study this logic, introducing Pseudomonadic BL-algebras. These algebras turn to be a generalization of both Pseudomonadic algebras introduced by Bezhanishvili (Math Log Q 48:624-636, 2002) and serial, Euclidean and transitive Bimodal Godel algebras proposed by Caicedo and Rodriguez (J Log Comput 25:37-55, 2015). We present the connection between this class of algebras and possibilistic BL-frames, as a first step to solve an open problem proposed by Hajek (Metamathematics of fuzzy logic. Trends in logic, Kluwer, Dordrecht, 1998, Chap. 8, Sect. 3).
引用
收藏
页码:2199 / 2212
页数:14
相关论文
共 50 条
  • [1] Pseudomonadic BL-algebras: an algebraic approach to possibilistic BL-logic
    Manuela Busaniche
    Penélope Cordero
    Ricardo Oscar Rodriguez
    Soft Computing, 2019, 23 : 2199 - 2212
  • [2] The variety generated by perfect BL-algebras:: An algebraic approach in a fuzzy logic setting
    Di Nola, A
    Sessa, S
    Esteva, F
    Godo, L
    Garcia, P
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2002, 35 (1-4) : 197 - 214
  • [3] The Variety Generated by Perfect BL-Algebras: an Algebraic Approach in a Fuzzy Logic Setting
    Antonio Di Nola
    Salvatore Sessa
    Francesc Esteva
    Lluis Godo
    Pere Garcia
    Annals of Mathematics and Artificial Intelligence, 2002, 35 : 197 - 214
  • [4] Basic fuzzy logic and BL-algebras
    P. Hájek
    Soft Computing, 1998, 2 (3) : 124 - 128
  • [5] Basic fuzzy logic and BL-algebras II
    P. Hájek
    Soft Computing, 2003, 7 : 179 - 183
  • [6] Basic fuzzy logic and BL-algebras II
    Hájek, P
    SOFT COMPUTING, 2003, 7 (03) : 179 - 183
  • [7] Soft sets, soft BL-algebras and soft Logic System BL
    Zhu, Zhenguo
    CEIS 2011, 2011, 15
  • [8] BL-algebras and effect algebras
    Vetterlein, T
    SOFT COMPUTING, 2005, 9 (08) : 557 - 564
  • [9] Quasihyperarchimedean BL-algebras
    Lele, Celestin
    Nganou, Jean B.
    Oumarou, Christian M. S.
    FUZZY SETS AND SYSTEMS, 2023, 463
  • [10] Uniform BL-algebras
    R. Khanegir
    G. R. Rezaei
    N. Kouhestani
    Soft Computing, 2019, 23 : 5991 - 6003