Semantic R-CNN for Natural Language Object Detection

被引:0
|
作者
Ye, Shuxiong [1 ]
Qin, Zheng [1 ]
Xu, Kaiping [1 ]
Huang, Kai [1 ]
Wang, Guolong [1 ]
机构
[1] Tsinghua Univ, Sch Software, Beijing, Peoples R China
关键词
Object detection; Natural language; RPN;
D O I
10.1007/978-3-319-77383-4_10
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present a simple and effective framework for natural language object detection, to localize a target within an image based on description of the target. The method, called semantic R-CNN, extends RPN (Region Proposal Network) [1] by adding LSTM [20] module for processing natural language query text. LSTM [20] module take encoded query text and image descriptors as input and output the probability of the query text conditioned on visual features of candidate box and whole image. Those candidate boxes are generated by RPN and their local features are extracted by ROI pooling. RPN can be initialized from pre-trained Faster R-CNN model [1], transfers object visual knowledge from traditional object detection domain to our task. Experimental results demonstrate that our method significantly outperform previous baseline SCRC (Spatial Context Recurrent ConvNet) [7] model on Referit dataset [8], moreover, our model is simple to train similar to Faster R-CNN.
引用
收藏
页码:98 / 107
页数:10
相关论文
共 50 条
  • [41] Rotated Faster R-CNN for Oriented Object Detection in Aerial Images
    Yang, Sheng
    Pei, Ziqiang
    Zhou, Feng
    Wang, Guoyou
    PROCEEDINGS OF 2020 3RD INTERNATIONAL CONFERENCE ON ROBOT SYSTEMS AND APPLICATIONS, ICRSA2020, 2020, : 35 - 39
  • [42] Faster R-CNN with Attention Feature Map for Robust Object Detection
    Lee, Youl-Kyeong
    Jo, Kang-Hyun
    FRONTIERS OF COMPUTER VISION, 2020, 1212 : 180 - 191
  • [43] Crowd R-CNN: An Object Detection Model Utilizing Crowdsourced Labels
    Hu, Yucheng
    Song, Meina
    ICVISP 2019: PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON VISION, IMAGE AND SIGNAL PROCESSING, 2019,
  • [44] Cascade R-CNN: High Quality Object Detection and Instance Segmentation
    Cai, Zhaowei
    Vasconcelos, Nuno
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (05) : 1483 - 1498
  • [45] An Automatic Object Detection and Location System applying Faster R-CNN
    Falquete, Rodrigo Bernardes
    Cavalieri, Daniel Cruz
    Pereira, Flavio Garcia
    2018 13TH IEEE INTERNATIONAL CONFERENCE ON INDUSTRY APPLICATIONS (INDUSCON), 2018, : 902 - 908
  • [46] Image Object Detection Method Based on Improved Faster R-CNN
    Yin, Xiuye
    Chen, Liyong
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2024, 33 (07)
  • [47] ATTENTION-ENHANCED AND MORE BALANCED R-CNN FOR OBJECT DETECTION
    Mei, Ruohong
    Wang, Haiying
    Men, Aidong
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 2136 - 2140
  • [48] Design and Implementation of an Object Detection System Using Faster R-CNN
    Wang Cheng
    Peng Zhihao
    2019 INTERNATIONAL CONFERENCE ON ROBOTS & INTELLIGENT SYSTEM (ICRIS 2019), 2019, : 204 - 206
  • [49] PMR-CNN: Prototype Mixture R-CNN for Few-Shot Object Detection
    Zhou, Jiancong
    Mei, Jilin
    Li, Haoyu
    Hu, Yu
    2023 IEEE INTELLIGENT VEHICLES SYMPOSIUM, IV, 2023,
  • [50] Object detection and recognition using contour based edge detection and fast R-CNN
    Rani, Shilpa
    Ghai, Deepika
    Kumar, Sandeep
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (29) : 42183 - 42207