On the Boyd-Kadomstev System for a Three-Wave Coupling Problem and its Asymptotic Limit

被引:0
|
作者
Metivier, Guy [1 ]
Sentis, Remi [2 ]
机构
[1] Univ Bordeaux, IMB, F-33405 Talence, France
[2] CEA, DAM, DIF Bruyeres, F-91297 Arpajon, France
关键词
NONLINEAR GEOMETRIC OPTICS; LASER-PLASMA INTERACTION; INCOMPRESSIBLE LIMIT; SINGULAR LIMITS; EQUATIONS; RAMAN;
D O I
10.1007/s00220-013-1672-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the Boyd-Kadomstev system which is in particular a model for the Brillouin backscattering in laser-plasma interaction. It couples the propagation of two laser beams, the incoming and the backscattered waves, with an ion acoustic wave which propagates at a much slower speed. The ratio between the plasma sound velocity and the (group) velocity of light is small, with typical value of order 10(-3). In this paper, we make a rigorous analysis of the behavior of solutions as . This problem can be cast in the general framework of fast singular limits for hyperbolic systems. The main new point which is addressed in our analysis is that the singular relaxation term present in the equation is a nonlinear first order system.
引用
收藏
页码:303 / 330
页数:28
相关论文
共 50 条
  • [31] Normal and anomalous explosion mechanisms for nonlinear instabilities in three-wave coupling
    Li, DY
    Mao, DY
    Wang, DY
    JOURNAL OF PLASMA PHYSICS, 1997, 57 : 861 - 873
  • [32] Experimental method for identification of dispersive three-wave coupling in space plasma
    McCaffrey, D
    Bates, I
    Balikhin, MA
    Alleyne, HSK
    Dunlop, M
    Baumjohann, W
    COORDINATED MEASUREMENTS OF MAGNETOSPHERIC PROCESSES, 2000, 25 (7/8): : 1571 - 1577
  • [33] Three-wave coupling of microwaves in metamaterial with nonlinear resonant conductive elements
    Lapine, M.
    Gorkunov, M.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2004, 70 (6 2): : 1 - 066601
  • [34] Normal and anomalous explosion mechanisms for nonlinear instabilities in three-wave coupling
    Li, D.-Y.
    Mao, D.-Y.
    Wang, D.-Y.
    Journal of Plasma Physics, 1997, 57 (pt 4): : 861 - 873
  • [35] A self-consistent three-wave coupling model with complex linear frequencies
    Kim, J. -H.
    Terry, P. W.
    PHYSICS OF PLASMAS, 2011, 18 (09)
  • [36] Spectral transform and solitons for the three-wave coupling model with nontrivial boundary conditions
    Doktorov, EV
    JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (08) : 4138 - 4150
  • [37] Solitons in a three-wave system with intrinsic linear mixing and walkoff
    Kaplan, A
    Malomed, BA
    OPTICS COMMUNICATIONS, 2002, 211 (1-6) : 323 - 334
  • [38] A three-wave coupling method for data treatment in SHPB experiments with metal samples
    Shang, Bing
    Hu, Shi-Sheng
    Jiang, Xi-Quan
    Baozha Yu Chongji/Explosion and Shock Waves, 2010, 30 (04): : 429 - 432
  • [39] Invariant algebraic surfaces for the reduced three-wave interaction system
    Mahdi, Adam
    Valls, Claudia
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (12)
  • [40] On self-similar solution of a system of three-wave interaction
    Tsegelnik, VV
    DOKLADY AKADEMII NAUK BELARUSI, 1997, 41 (03): : 17 - 20