KAMENEV-TYPE OSCILLATION CRITERIA FOR SECOND-ORDER QUASILINEAR DIFFERENTIAL EQUATIONS

被引:0
|
作者
Xu, Zhiting [1 ]
Xia, Yong [2 ]
机构
[1] S China Normal Univ, Sch Math Sci, Guangzhou 510090, Guangdong, Peoples R China
[2] Dongguan Inst Technol, Dept Math, Dongguan 511700, Peoples R China
关键词
Oscillation; second order quasilinear differential equation; integral operator;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain Kamenev-type oscillation criteria for the second-order quasilinear differential equation (r(t)vertical bar y'(t)vertical bar(alpha) (1)y'(t))' + p(t) vertical bar y(t)vertical bar(beta) (1)y(t) = 0 . The criteria obtained extend the integral averaging technique and include earlier results due to Kamenev, Philos and Wong.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] New Kamenev-type oscillation criteria for half-linear partial differential equations
    Yang, Ge-feng
    Xu, Zhi-ting
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2012, 28 (03): : 535 - 548
  • [32] KAMENEV-TYPE AND INTERVAL OSCILLATION THEOREMS FOR SECOND ORDER NONLINEAR DELAY DYNAMIC EQUATIONS
    Huang, Xiaocheng
    Xu, Zhiting
    DYNAMIC SYSTEMS AND APPLICATIONS, 2009, 18 (3-4): : 571 - 587
  • [33] New Oscillation Criteria for Second-Order Forced Quasilinear Functional Differential Equations
    Pasic, Mervan
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [34] Kamenev-type oscillation criteria for higher-order nonlinear dynamic equations on time scales
    Wu, Xin
    Sun, Taixiang
    Xi, Hongjian
    Chen, Changhong
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [35] Kamenev-type oscillation criteria for nonlinear neutral delay difference equations
    Zhang, BG
    Saker, SH
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2003, 34 (11): : 1571 - 1584
  • [36] Kamenev-type oscillation criteria for higher-order nonlinear dynamic equations on time scales
    Xin Wu
    Taixiang Sun
    Hongjian Xi
    Changhong Chen
    Advances in Difference Equations, 2013
  • [37] OSCILLATION CRITERIA FOR DAMPED QUASILINEAR SECOND-ORDER ELLIPTIC EQUATIONS
    Tadie
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2011,
  • [38] Oscillation and nonoscillation criteria for second order quasilinear differential equations
    Kusano, T
    Naito, Y
    ACTA MATHEMATICA HUNGARICA, 1997, 76 (1-2) : 81 - 99
  • [39] Oscillation and nonoscillation criteria for second order quasilinear differential equations
    T. Kusano
    Y. Naito
    Acta Mathematica Hungarica, 1997, 76 : 81 - 99
  • [40] Improved Hille-Type Oscillation Criteria for Second-Order Quasilinear Dynamic Equations
    Hassan, Taher S.
    Cesarano, Clemente
    El-Nabulsi, Rami Ahmad
    Anukool, Waranont
    MATHEMATICS, 2022, 10 (19)