A tight upper bound for 2-rainbow domination in generalized Petersen graphs

被引:12
|
作者
Wang, Yue-Li [1 ]
Wu, Kuo-Hua [1 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Dept Informat Management, Taipei 10607, Taiwan
关键词
Domination; Rainbow domination; Upper bound; Generalized Petersen graphs;
D O I
10.1016/j.dam.2013.02.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let! be a function that assigns to each vertex a subset of colors chosen from a set l = [1, 2, ... , k) of k colors. If boolean OR(u is an element of N(v))f(u) = l for each vertex v E V with f (v) = phi, then f is called a k-rainbow dominating function (kRDF) of G where N(v) = {u is an element of V vertical bar uv is an element of E}. The weight off, denoted by in(f), is defined as w(f) = Sigma(u is an element of v). vertical bar f(v)vertical bar Given a graph G, the minimum weight among all weights of kRDFs, denoted by y(rk)(G), is called the k-rainbow domination number of G. Bresar and Sumenjak (2007) 151gave an upper bound and a lower bound for gamma(r2)(GP(n, k)). They showed that [4n/5] <= gamma(r2)(GP(n, k)) <= n. In this paper, we propose a tight upper bound for gamma(r2)(GP(n. k)) when n >= 4k + 1. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:2178 / 2188
页数:11
相关论文
共 50 条
  • [41] The 2-Rainbow Domination of Sierpiński Graphs and Extended Sierpiński Graphs
    Jia-Jie Liu
    Shun-Chieh Chang
    Chiou-Jiun Lin
    Theory of Computing Systems, 2017, 61 : 893 - 906
  • [42] RELATING 2-RAINBOW DOMINATION TO ROMAN DOMINATION
    Alvarado, Jose D.
    Dantas, Simone
    Rautenbach, Dieter
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2017, 37 (04) : 953 - 961
  • [43] POWER DOMINATION IN THE GENERALIZED PETERSEN GRAPHS
    Zhao, Min
    Shan, Erfang
    Kang, Liying
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2020, 40 (03) : 695 - 712
  • [44] Vertex domination of generalized Petersen graphs
    Ebrahimi, B. Javad
    Jahanbakht, Nafiseh
    Mahmoodian, E. S.
    DISCRETE MATHEMATICS, 2009, 309 (13) : 4355 - 4361
  • [45] [1,2]-Domination in generalized Petersen graphs
    Beggas, Fairouz
    Turau, Volker
    Haddad, Mohammed
    Kheddouci, Hamamache
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2019, 11 (05)
  • [46] On the domination number of the generalized Petersen graphs
    Behzad, Arash
    Behzad, Mehdi
    Praeger, Cheryl E.
    DISCRETE MATHEMATICS, 2008, 308 (04) : 603 - 610
  • [47] 2-Domination number of generalized Petersen graphs
    Bakhshesh, Davood
    Farshi, Mohammad
    Hooshmandasl, Mohammad Reza
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2018, 128 (02):
  • [48] 2-Domination number of generalized Petersen graphs
    Davood Bakhshesh
    Mohammad Farshi
    Mohammad Reza Hooshmandasl
    Proceedings - Mathematical Sciences, 2018, 128
  • [49] Upper bound on 3-rainbow domination in graphs with minimum degree 2
    Furuya, Michitaka
    Koyanagi, Masaki
    Yokota, Maho
    DISCRETE OPTIMIZATION, 2018, 29 : 45 - 76
  • [50] 2-rainbow domination of circulant graphs C(n;{1,2})
    Wu Xiaofeng
    Fu Xueliang
    Dong Gaifang
    Hu Hua
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2014, 52 (06): : 35 - 41