A tight upper bound for 2-rainbow domination in generalized Petersen graphs

被引:12
|
作者
Wang, Yue-Li [1 ]
Wu, Kuo-Hua [1 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Dept Informat Management, Taipei 10607, Taiwan
关键词
Domination; Rainbow domination; Upper bound; Generalized Petersen graphs;
D O I
10.1016/j.dam.2013.02.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let! be a function that assigns to each vertex a subset of colors chosen from a set l = [1, 2, ... , k) of k colors. If boolean OR(u is an element of N(v))f(u) = l for each vertex v E V with f (v) = phi, then f is called a k-rainbow dominating function (kRDF) of G where N(v) = {u is an element of V vertical bar uv is an element of E}. The weight off, denoted by in(f), is defined as w(f) = Sigma(u is an element of v). vertical bar f(v)vertical bar Given a graph G, the minimum weight among all weights of kRDFs, denoted by y(rk)(G), is called the k-rainbow domination number of G. Bresar and Sumenjak (2007) 151gave an upper bound and a lower bound for gamma(r2)(GP(n, k)). They showed that [4n/5] <= gamma(r2)(GP(n, k)) <= n. In this paper, we propose a tight upper bound for gamma(r2)(GP(n. k)) when n >= 4k + 1. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:2178 / 2188
页数:11
相关论文
共 50 条
  • [1] On 2-rainbow domination of generalized Petersen graphs
    Shao, Zehui
    Jiang, Huiqin
    Wu, Pu
    Wang, Shaohui
    Zerovnik, Janez
    Zhang, Xiaosong
    Liu, Jia-Bao
    DISCRETE APPLIED MATHEMATICS, 2019, 257 : 370 - 384
  • [2] 2-rainbow domination of generalized Petersen graphs P(n, 2)
    Tong Chunling
    Lin Xiaohui
    Yang Yuansheng
    Luo Meiqin
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (08) : 1932 - 1937
  • [3] On 2-Rainbow Domination of Generalized Petersen Graphs P(ck,k)
    Brezovnik, Simon
    Rupnik Poklukar, Darja
    Zerovnik, Janez
    MATHEMATICS, 2023, 11 (10)
  • [4] 2-rainbow domination in generalized Petersen graphs P(n, 3)
    Xu, Guangjun
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (11) : 2570 - 2573
  • [5] A lower bound for 2-rainbow domination number of generalized Petersen graphs P(n,3)
    Tong Chunling
    Lin Xiaohui
    Yang Yuansheng
    Zhang Baosheng
    Zheng Xianchen
    ARS COMBINATORIA, 2011, 102 : 483 - 492
  • [6] On the 2-rainbow domination in graphs
    Bresar, Bostjan
    Sumenjak, Tadeja Kraner
    DISCRETE APPLIED MATHEMATICS, 2007, 155 (17) : 2394 - 2400
  • [7] On 2-Rainbow Domination Number of Generalized Petersen Graphs P(5k,k)
    Erves, Rija
    Zerovnik, Janez
    SYMMETRY-BASEL, 2021, 13 (05):
  • [8] On 2-rainbow domination and Roman domination in graphs
    Chellali, Mustapha
    Rad, Nader Jafari
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2013, 56 : 85 - 93
  • [9] 2-Rainbow domination stability of graphs
    Li, Zepeng
    Shao, Zehui
    Xu, Shou-jun
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2019, 38 (03) : 836 - 845
  • [10] Rainbow domination numbers of generalized Petersen graphs
    Gao, Zhipeng
    Lei, Hui
    Wang, Kui
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 382