Realizing ferroelectric Hf0.5Zr0.5O2 with elemental capping layers

被引:53
|
作者
Lin, Yuh-Chen [1 ]
McGuire, Felicia [1 ]
Franklin, Aaron D. [1 ,2 ]
机构
[1] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA
[2] Duke Univ, Dept Chem, Durham, NC 27708 USA
来源
基金
美国国家科学基金会;
关键词
NEGATIVE CAPACITANCE; THIN-FILMS; TRANSISTOR; DEVICES; MEMORY;
D O I
10.1116/1.5002558
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Hafnium zirconium oxide (Hf0.5Zr0.5O2 or HZO) thin films show great promise for enabling ferroelectric field-effect transistors (FeFETs) for memory applications and negative capacitance FETs for low-power digital devices. One challenge in the integration of ferroelectric HZO is the need for specific capping layers to yield the most pronounced ferroelectric behavior; to date, superior HZO devices use titanium nitride or tantalum nitride, which limits HZO integration into various device structures. In this work, the authors demonstrate the use of elemental capping layers, including Pt, Ni, and Pd, for driving ferroelectricity in HZO. Different combinations of these capping metals, along with changes in the HZO thickness and annealing conditions, have yielded the optimal conditions for maximizing ferroelectric behavior. A remnant polarization of 19 mu C/cm(2) and a coercive field strength of 1.07MV/cm were achieved with the Pt/HZO/Ni stack annealed at 650 degrees C with a HZO thickness of similar to 20 nm. These results bring even greater promise to the use of HZO in memory and/or digital electronic devices by expanding the toolkit of materials that may be used for realizing ferroelectricity. Published by the AVS.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Interfacial Regulation of Dielectric Properties in Ferroelectric Hf0.5Zr0.5O2 Thin Films
    Shao, Minghao
    Lu, Tianqi
    Wang, Zhibo
    Liu, Houfang
    Zhao, Ruiting
    Liu, Xiao
    Zhao, Xiaoyue
    Liang, Renrong
    Yang, Yi
    Ren, Tian-Ling
    IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2021, 9 : 1093 - 1097
  • [42] Ferroelectric control of the perpendicular magnetic anisotropy in PtCoRu/Hf0.5Zr0.5O2 heterostructure
    Zhang, Bao
    Li, Chunlong
    Hong, Peizhen
    Huo, Zongliang
    APPLIED PHYSICS LETTERS, 2021, 119 (02)
  • [43] Effects of high pressure nitrogen annealing on ferroelectric Hf0.5Zr0.5O2 films
    Kim, Taeho
    Park, Jinsung
    Cheong, Byoung-Ho
    Jeon, Sanghun
    APPLIED PHYSICS LETTERS, 2018, 112 (09)
  • [44] Tensile stress regulated microstructures and ferroelectric properties of Hf0.5Zr0.5O2 films
    霍思颖
    郑俊锋
    刘远洋
    李育姗
    陶瑞强
    陆旭兵
    刘俊明
    Chinese Physics B, 2023, 32 (12) : 79 - 84
  • [45] Effects of high pressure oxygen annealing on Hf0.5Zr0.5O2 ferroelectric device
    Kim, Hyungwoo
    Kashir, Alireza
    Oh, Seungyeol
    Jang, Hojung
    Hwang, Hyunsang
    NANOTECHNOLOGY, 2021, 32 (31)
  • [46] Wake-Up Free Ultrathin Ferroelectric Hf0.5Zr0.5O2 Films
    Chouprik, Anastasia
    Mikheev, Vitalii
    Korostylev, Evgeny
    Kozodaev, Maxim
    Zarubin, Sergey
    Vinnik, Denis
    Gudkova, Svetlana
    Negrov, Dmitrii
    NANOMATERIALS, 2023, 13 (21)
  • [47] Photoinduced patterning of oxygen vacancies to promote the ferroelectric phase of Hf0.5Zr0.5O2
    Beechem, Thomas E.
    Vega, Fernando
    Jaszewski, Samantha T.
    Aronson, Benjamin L.
    Kelley, Kyle P.
    Ihlefeld, Jon. F.
    APPLIED PHYSICS LETTERS, 2024, 124 (06)
  • [48] Vector piezoelectric response and ferroelectric domain formation in Hf0.5Zr0.5O2 films
    Tan, Huan
    Song, Tingfeng
    Dix, Nico
    Sanchez, Florencio
    Fina, Ignasi
    JOURNAL OF MATERIALS CHEMISTRY C, 2023, 11 (22) : 7219 - 7226
  • [49] Improved Ferroelectric Properties in Hf0.5Zr0.5O2 Thin Films by Microwave Annealing
    Zhao, Biyao
    Yan, Yunting
    Bi, Jinshun
    Xu, Gaobo
    Xu, Yannan
    Yang, Xueqin
    Fan, Linjie
    Liu, Mengxin
    NANOMATERIALS, 2022, 12 (17)
  • [50] Short-Range Order in Amorphous and Crystalline Ferroelectric Hf0.5Zr0.5O2
    S. B. Erenburg
    S. V. Trubina
    K. O. Kvashnina
    V. N. Kruchinin
    V. V. Gritsenko
    A. G. Chernikova
    A. M. Markeev
    Journal of Experimental and Theoretical Physics, 2018, 126 : 816 - 824