Frequent Itemset Generation using Double Hashing Technique

被引:4
|
作者
Jayalakshmi, N. [1 ]
Vidhya, V. [2 ]
Krishnamurthy, M. [1 ]
Kannan, A. [3 ]
机构
[1] Sri Venkateswara Coll Engn, Dept Comp Applicat, Sriperumbudur 602105, India
[2] Sri Venkateswara Coll Engn, Dept Comp Sci & Engn, Sriperumbudur 602105, India
[3] Anna Univ, Dept Informat Sci & Technol, Madras 600025, Tamil Nadu, India
关键词
Association Rule; Double Hashing; Frequent Itemset; Secondary Clustering; Hash Collision;
D O I
10.1016/j.proeng.2012.06.181
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In data mining, frequent itemsets plays an important role which is used to identify the correlations among the fields of database. In this paper, we propose a new association rule mining algorithm called Double Hashing Based Frequent Itemsets, (DHBFI) in which hashing technology is used to store the database in vertical data format. This double hashing technique is mainly preferred for avoiding the major issues of hash collision and secondary clustering problem in frequent itemset generation. Hence this proposed hashing technique makes the computation easier, faster and more efficient. Also this algorithm eliminates unnecessary redundant scans in the database and candidate itemset generation which leads to less space and time complexity. (C) 2012 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of Noorul Islam Centre for Higher Education
引用
收藏
页码:1467 / 1478
页数:12
相关论文
共 50 条
  • [21] Inverted Index Automata Frequent Itemset Mining for Large Dataset Frequent Itemset Mining
    Dai, Xin
    Hamed, Haza Nuzly Abdull
    Su, Qichen
    Hao, Xue
    IEEE ACCESS, 2024, 12 : 195111 - 195130
  • [22] A maximal frequent itemset algorithm
    Wang, H
    Li, QH
    Ma, CX
    Li, KL
    ROUGH SETS, FUZZY SETS, DATA MINING, AND GRANULAR COMPUTING, 2003, 2639 : 484 - 490
  • [23] FIsViz: A frequent itemset visualizer
    Leung, Carson Kai-Sang
    Irani, Pourang P.
    Carmichael, Christopher L.
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2008, 5012 : 644 - 652
  • [24] On A Visual Frequent Itemset Mining
    Lim, SeungJin
    2009 FOURTH INTERNATIONAL CONFERENCE ON DIGITAL INFORMATION MANAGEMENT, 2009, : 25 - 30
  • [25] Frequent Itemset Mining on Hadoop
    Ferenc Kovacs
    Illes, Janos
    IEEE 9TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL CYBERNETICS (ICCC 2013), 2013, : 241 - 245
  • [26] Inventory policies in a frequent itemset
    Kaku, I
    ICIM' 2004: PROCEEDINGS OF THE SEVENTH INTERNATIONAL CONFERENCE ON INDUSTRIAL MANAGEMENT, 2004, : 21 - 25
  • [27] A Frequent Itemset Hiding Toolbox
    Gkoulalas-Divanis, Aris
    Kagklis, Vasileios
    Stavropoulos, Elias C.
    ALGORITHMIC ASPECTS OF CLOUD COMPUTING (ALGOCLOUD 2018), 2019, 11409 : 169 - 182
  • [28] HDFS Framework for Efficient Frequent Itemset Mining Using MapReduce
    Kulkarni, Prajakta G.
    Khonde, Shraddha R.
    2017 1ST INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND INFORMATION MANAGEMENT (ICISIM), 2017, : 171 - 178
  • [29] Mining frequent sequences using itemset-based extension
    Ma, Zhixin
    Xu, Yusheng
    Dillon, Tharam S.
    Chen Xiaoyun
    IMECS 2008: INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS, VOLS I AND II, 2008, : 591 - +
  • [30] A Parallel Algorithm for Approximate Frequent Itemset Mining using MapReduce
    Fumarola, Fabio
    Malerba, Donato
    2014 INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING & SIMULATION (HPCS), 2014, : 335 - 342