Finding eigenvalues for heptadiagonal symmetric Toeplitz matrices

被引:15
|
作者
Solary, Maryam Shams [1 ]
机构
[1] Payame Noor Univ, Dept Math, Tehran, Iran
关键词
Toeplitz matrix; Determinant; Eigenvalue; Chebyshev polynomial;
D O I
10.1016/j.jmaa.2013.02.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a formula for the determinant of heptadiagonal symmetric Toeplitz matrices is obtained. This formula and rational functions are used for studying eigenvalue localization. This work is done by Chebyshev polynomials of the first, second, third and fourth kinds. (c) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:719 / 730
页数:12
相关论文
共 50 条
  • [31] Asymptotics of eigenvalues of large symmetric Toeplitz matrices with smooth simple-loop symbols
    Batalshchikov, A. A.
    Grudsky, S. M.
    Malisheva, I. S.
    Mihalkovich, S. S.
    Ramirez de Arellano, E.
    Stukopin, V. A.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 580 : 292 - 335
  • [32] ON THE EIGENVECTORS OF SYMMETRIC TOEPLITZ MATRICES
    MAKHOUL, J
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1981, 29 (04): : 868 - 872
  • [33] Orthogonal Symmetric Toeplitz Matrices
    Albrecht Böttcher
    Complex Analysis and Operator Theory, 2008, 2 : 285 - 298
  • [34] Orthogonal Symmetric Toeplitz Matrices
    Boettcher, Albrecht
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2008, 2 (02) : 285 - 298
  • [35] Explicit Eigenvalues of Some Perturbed Heptadiagonal Matrices Via Recurrent Sequences
    Kouachi, S.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2015, 36 (01) : 28 - 37
  • [36] Toeplitz matrices are unitarily similar to symmetric matrices
    Chien, Mao-Ting
    Liu, Jianzhen
    Nakazato, Hiroshi
    Tam, Tin-Yau
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (10): : 2131 - 2144
  • [37] A cost-efficient numerical algorithm for the determinants of heptadiagonal matrices with Toeplitz structure
    Ji-Teng Jia
    Fu-Rong Wang
    Journal of Mathematical Chemistry, 2023, 61 : 1275 - 1291
  • [39] A robust algorithm for finding the eigenvalues and eigenvectors of 3 x 3 symmetric matrices
    Scherzinger, W. M.
    Dohrmann, C. R.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 197 (45-48) : 4007 - 4015
  • [40] Eigenvalues of Real Symmetric Matrices
    Geck, Meinolf
    AMERICAN MATHEMATICAL MONTHLY, 2015, 122 (05): : 482 - 483