Influence of strain-specific parameters on hydrothermal liquefaction of microalgae

被引:99
|
作者
Barreiro, Diego Lopez [1 ]
Zamalloa, Carlos [2 ]
Boon, Nico [2 ]
Vyverman, Wim [3 ]
Ronsse, Frederik [1 ]
Brilman, Wim [4 ]
Prins, Wolter [1 ]
机构
[1] Univ Ghent, Fac Biosci Engn, Dept Biosyst Engn, B-9000 Ghent, Belgium
[2] Univ Ghent, Lab Microbial Ecol & Technol LabMET, B-9000 Ghent, Belgium
[3] Univ Ghent, B-9000 Ghent, Belgium
[4] Univ Twente, Fac Sci & Technol, NL-7500 AE Enschede, Netherlands
关键词
Microalgae; Hydrothermal liquefaction; Biofuel production; SUPERCRITICAL WATER; BIOFUEL PRODUCTION; BIO-OIL; BIOMASS; TECHNOLOGIES; GASIFICATION; FEEDSTOCKS; CHEMICALS; BIODIESEL; FUELS;
D O I
10.1016/j.biortech.2013.07.123
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Algae are an interesting feedstock for producing biofuel via hydrothermal liquefaction (HTL), due to their high water content. In this study, algae slurries (5-7 wt% daf) from different species were liquefied at 250 and 375 degrees C in batch autoclaves during 5 min. The aim was to analyze the influence of strain-specific parameters (cell structure, biochemical composition and growth environment) on the HTL process. Results show big variations in the biocrude oil yield within species at 250 degrees C (from 17.6 to 44.8 wt%). At 375 degrees C, these differences become less significant (from 45.6 to 58.1 wt%). An appropriate characterization of feedstock appeared to be critical to interpret the results. If a high conversion of microalgae-to-biocrude is pursued, near critical conditions are required, with Scenedesmus almeriensis (freshwater) and Nannochloropsis gaditana (marine) leading to the biocrude oils with lower nitrogen content from each growth environment. (c) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:463 / 471
页数:9
相关论文
共 50 条
  • [21] HPV STRAIN-SPECIFIC PROBES
    TENTI, P
    ZAPPATORE, R
    CARNEVALI, L
    SILINI, E
    ROMAGNOLI, S
    GIANATTI, A
    LIVER, 1992, 12 (04): : 262 - 267
  • [22] Hydrothermal Liquefaction of Microalgae in a Continuous Stirred-Tank Reactor
    Barreiro, Diego Lopez
    Gomez, Blanca Rios
    Hornung, Ursel
    Kruse, Andrea
    Prins, Wolter
    ENERGY & FUELS, 2015, 29 (10) : 6422 - 6432
  • [23] Hydrothermal liquefaction of microalgae to make crude bio-oils
    Savage, Phillip
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 240
  • [24] Conversion of high-ash microalgae through hydrothermal liquefaction
    Liu, Huihui
    Chen, Yingquan
    Yang, Haiping
    Gentili, Francesco G.
    Soderlind, Ulf
    Wang, Xianhua
    Zhang, Wennan
    Chen, Hanping
    SUSTAINABLE ENERGY & FUELS, 2020, 4 (06) : 2782 - 2791
  • [25] Use of Co-Solvents in Hydrothermal Liquefaction (HTL) of Microalgae
    Han, Yang
    Hoekman, Kent
    Jena, Umakanta
    Das, Probir
    ENERGIES, 2020, 13 (01)
  • [26] Distributions of organic compounds to the products from hydrothermal liquefaction of microalgae
    Chen, Yu
    Zhao, Nannan
    Wu, Yulong
    Wu, Kejing
    Wu, Xiuyun
    Liu, Ji
    Yang, Mingde
    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2017, 36 (01) : 259 - 268
  • [27] Biocrude Upgrading in Different Solvents after Microalgae Hydrothermal Liquefaction
    Xu, Donghai
    Wei, Ning
    Liang, Yu
    Wang, Han
    Liu, Liang
    Wang, Shuzhong
    Industrial and Engineering Chemistry Research, 2021, 60 (21): : 7966 - 7974
  • [28] Characterization of products from fast and isothermal hydrothermal liquefaction of microalgae
    Faeth, Julia L.
    Savage, Phillip E.
    Jarvis, Jacqueline M.
    McKenna, Amy M.
    Savage, Phillip E.
    AICHE JOURNAL, 2016, 62 (03) : 815 - 828
  • [29] Towards a model for predicting hydrothermal liquefaction of microalgae of varying composition
    Strathmann, Timothy
    Leow, Shijie
    Li, Yalin
    Guest, Jeremy
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [30] A molecular, elemental, and multiphase kinetic model for the hydrothermal liquefaction of microalgae
    Hietala, David C.
    Savage, Phillip E.
    CHEMICAL ENGINEERING JOURNAL, 2021, 407