Atmospheric pressure microwave microplasma microorganism deactivation

被引:14
|
作者
Czylkowski, D. [1 ]
Hrycak, B. [1 ]
Jasinski, M. [1 ]
Dors, M. [1 ]
Mizeraczyk, J. [1 ,2 ]
机构
[1] Polish Acad Sci, Ctr Plasma & Laser Engn, Szewalski Inst Fluid Flow Machinery, PL-80952 Gdansk, Poland
[2] Gdynia Maritime Univ, Dept Marine Elect, PL-81225 Gdynia, Poland
来源
关键词
Microwave plasma; Atmospheric pressure plasma; Microplasma; Decontamination; Sterilization; MICROSTRIP TECHNOLOGY; PLASMA STERILIZATION; INACTIVATION; DISCHARGE; JET; GENERATION;
D O I
10.1016/j.surfcoat.2013.04.010
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This paper is focused on the experimental investigations of microorganism decontamination by using low temperature Ar and Ar/O-2 microwave microplasma. Microplasma in the form of a microflame was generated using a simple coaxial microwave microplasma source (MmPS). The MmPS was operated at standard microwave frequency of 2.45 GHz. The electron density, microplasma temperatures and active species identification were determined on the way of Optical Emission Spectroscopy. The results of the spectroscopic measurements confirmed the MmPS usefulness in biomedical applications. The microplasma deactivation concerned two types of bacteria (Escherichia coli, Bacillus subtilis) and one fungus (Aspergillus niger). The investigations involved influence of the O-2 concentration, absorbed microwave power, microplasma treatment time and microplasma distance from the treated sample on the microorganism deactivation efficiency. All reported results were obtained for Ar and Ar/O-2 microplasma with gas flow rates of single l/min and O-2 admixture not exceeding 2%. The absorbed microwave power was up to 50 W. The sample treatment time was up to 10 s. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:114 / 119
页数:6
相关论文
共 50 条
  • [31] Characterisation of a 3 nanosecond pulsed atmospheric pressure argon microplasma
    J. L. Walsh
    F. Iza
    M. G. Kong
    The European Physical Journal D, 2010, 60 : 523 - 530
  • [32] Characteristics of Atmospheric Pressure Argon Microplasma Jet in Open Environment
    Xia, Linghan
    Chang, Zezhou
    Li, Yimeng
    Shi, Ruoli
    Cheng, Yonghong
    Meng, Guodong
    Gaodianya Jishu/High Voltage Engineering, 50 (12): : 5638 - 5647
  • [33] Synthesis of iron oxide nanoparticles in microplasma under atmospheric pressure
    Lin, Liangliang
    Starostin, Sergey A.
    Hessel, Volker
    Wang, Qi
    CHEMICAL ENGINEERING SCIENCE, 2017, 168 : 360 - 371
  • [34] Simulation of a direct current microplasma discharge in helium at atmospheric pressure
    Wang, Qiang
    Economou, Demetre J.
    Donnelly, Vincent M.
    JOURNAL OF APPLIED PHYSICS, 2006, 100 (02)
  • [35] Atmospheric pressure microplasma source based on parallel stripline resonator
    Tran, T. H.
    You, S. J.
    Park, M.
    Kim, J. H.
    Seong, D. J.
    Shin, Y. H.
    Jeong, J. R.
    CURRENT APPLIED PHYSICS, 2011, 11 (05) : S126 - S130
  • [36] Mass spectrometric diagnosis of an atmospheric pressure helium microplasma jet
    McKay, K.
    Oh, J-S
    Walsh, J. L.
    Bradley, J. W.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2013, 46 (46)
  • [37] Characterisation of a 3 nanosecond pulsed atmospheric pressure argon microplasma
    Walsh, J. L.
    Iza, F.
    Kong, M. G.
    EUROPEAN PHYSICAL JOURNAL D, 2010, 60 (03): : 523 - 530
  • [38] Thin film deposition by means of atmospheric pressure microplasma jet
    Benedikt, J.
    Raballand, V.
    Yanguas-Gil, A.
    Focke, K.
    von Keudell, A.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2007, 49 (12B) : B419 - B427
  • [39] Synthesis of Si nanocones using rf microplasma at atmospheric pressure
    Yang, Zhongshi
    Shirai, Hajime
    Kobayashi, Tomohiro
    Hasegawa, Yasuhiro
    THIN SOLID FILMS, 2007, 515 (09) : 4153 - 4158
  • [40] Synthesis of silicon nanocones using rf microplasma at atmospheric pressure
    Shirai, H
    Kobayashi, T
    Hasegawa, Y
    APPLIED PHYSICS LETTERS, 2005, 87 (14) : 1 - 3